executor_test.cc 9.3 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/executor.h"
Q
qijun 已提交
16
#include <vector>
Y
Yang Yang 已提交
17
#include "gtest/gtest.h"
Y
Yang Yang 已提交
18
#include "paddle/framework/attribute.h"
Y
Yang Yang 已提交
19 20 21 22 23
#include "paddle/framework/grad_op_builder.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"

USE_OP(elementwise_add);
Y
Yang Yang 已提交
24
USE_OP(gaussian_random);
Q
qijun 已提交
25
USE_OP(feed);
Q
qijun 已提交
26
USE_OP(fetch);
Q
qijun 已提交
27

Y
Yang Yang 已提交
28
using std::string;
Q
qijun 已提交
29 30 31
using namespace paddle::platform;
using namespace paddle::framework;

Y
Yang Yang 已提交
32 33 34
typedef paddle::framework::BlockDesc proto_block;
typedef paddle::framework::OpDesc proto_op;

35 36
void add_gaussian_random_op(string var_name, std::vector<int>& dim,
                            proto_block* block) {
Y
Yang Yang 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  // insert variable
  auto a = block->add_vars();
  a->set_name(var_name);
  auto a_lt = a->mutable_lod_tensor();
  a_lt->set_data_type(paddle::framework::DataType::FP32);
  for (int i : dim) {
    a_lt->add_dims(i);
  }

  // insert operation
  auto op = block->add_ops();
  op->set_type("gaussian_random");
  auto dims = op->add_attrs();
  dims->set_name("dims");
  dims->set_type(paddle::framework::AttrType::INTS);
  for (int i : dim) {
    dims->add_ints(i);
  }
  auto Out = op->add_outputs();
  Out->set_parameter("Out");
  Out->add_arguments(var_name);
}

60 61
void add_feed_op(string var_name, std::vector<int>& dim, int index,
                 proto_block* block) {
Q
qijun 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  // insert variable
  auto a = block->add_vars();
  a->set_name(var_name);
  auto a_lt = a->mutable_lod_tensor();
  a_lt->set_data_type(paddle::framework::DataType::FP32);
  for (int i : dim) {
    a_lt->add_dims(i);
  }

  // insert operation
  auto op = block->add_ops();
  op->set_type("feed");

  // set dims attr
  auto dims = op->add_attrs();
  dims->set_name("dims");
  dims->set_type(paddle::framework::AttrType::INTS);
  for (int i : dim) {
    dims->add_ints(i);
  }

  // set col attr
  auto col = op->add_attrs();
  col->set_name("col");
  col->set_type(paddle::framework::AttrType::INT);
  col->set_i(index);

  auto Out = op->add_outputs();
  Out->set_parameter("Out");
  Out->add_arguments(var_name);
}

94 95
void add_fetch_op(string var_name, std::vector<int>& dim, int index,
                  proto_block* block) {
Q
qijun 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
  // insert variable
  auto a = block->add_vars();
  a->set_name(var_name);
  auto a_lt = a->mutable_lod_tensor();
  a_lt->set_data_type(paddle::framework::DataType::FP32);
  for (int i : dim) {
    a_lt->add_dims(i);
  }

  // insert operation
  auto op = block->add_ops();
  op->set_type("fetch");

  // set dims attr
  auto dims = op->add_attrs();
  dims->set_name("dims");
  dims->set_type(paddle::framework::AttrType::INTS);
  for (int i : dim) {
    dims->add_ints(i);
  }

  // set col attr
  auto col = op->add_attrs();
  col->set_name("col");
  col->set_type(paddle::framework::AttrType::INT);
  col->set_i(index);

  auto Out = op->add_inputs();
  Out->set_parameter("Input");
  Out->add_arguments(var_name);
}

Q
qijun 已提交
128 129 130 131 132
std::once_flag set_variable_flag;

template <typename T>
void set_feed_variable(const std::vector<std::vector<T>>& inputs) {
  typedef std::vector<paddle::framework::Tensor> FeedInputs;
Q
qijun 已提交
133
  // Tensors in feed value variable will only be in CPUPlace
Q
qijun 已提交
134 135 136
  Variable* g_feed_value = GetScope()->FindVar("feed_value");
  FeedInputs& feed_inputs = *(g_feed_value->GetMutable<FeedInputs>());
  auto size = inputs.size();
137
  feed_inputs.resize(size);
Q
qijun 已提交
138
  for (size_t i = 0; i < size; i++) {
139 140 141
    T* dst = feed_inputs[i].mutable_data<T>(
        make_ddim({static_cast<int64_t>(inputs[i].size())}), CPUPlace());
    memcpy(dst, inputs[i].data(), inputs[i].size() * sizeof(T));
Q
qijun 已提交
142 143 144
  }
}

Q
qijun 已提交
145 146 147
template <typename T>
std::vector<std::vector<T>> get_fetch_variable() {
  typedef std::vector<paddle::framework::Tensor> FetchOutputs;
Q
qijun 已提交
148
  // Tensors in fetch value variable will only be in CPUPlace
Q
qijun 已提交
149 150 151
  Variable* g_fetch_value = GetScope()->FindVar("fetch_value");
  FetchOutputs& fetch_outputs = *(g_fetch_value->GetMutable<FetchOutputs>());

152
  auto size = fetch_outputs.size();
Q
qijun 已提交
153 154 155 156
  std::vector<std::vector<T>> result;
  result.reserve(size);
  for (size_t i = 0; i < size; i++) {
    std::vector<T> tmp;
157
    tmp.resize(fetch_outputs[i].numel());
Q
qijun 已提交
158 159 160 161 162 163 164
    memcpy(tmp.data(), fetch_outputs[i].data<T>(),
           fetch_outputs[i].numel() * sizeof(T));
    result.push_back(tmp);
  }
  return result;
}

Q
qijun 已提交
165
class ExecutorTesterRandom : public ::testing::Test {
Q
qijun 已提交
166 167 168 169 170 171
 public:
  virtual void SetUp() override {
    auto root_block = pdesc_.add_blocks();
    root_block->set_idx(0);
    root_block->set_parent_idx(-1);

172 173 174
    std::vector<int> dim{2, 3};
    add_gaussian_random_op("a", dim, root_block);
    add_gaussian_random_op("b", dim, root_block);
Q
qijun 已提交
175 176 177 178 179 180

    auto c = root_block->add_vars();
    c->set_name("c");
    auto c_lt = c->mutable_lod_tensor();
    c_lt->set_data_type(paddle::framework::DataType::FP32);

Y
Yang Yang 已提交
181 182 183
    auto op = root_block->add_ops();
    op->set_type("elementwise_add");
    auto X = op->add_inputs();
Q
qijun 已提交
184 185
    X->set_parameter("X");
    X->add_arguments("a");
Y
Yang Yang 已提交
186
    auto Y = op->add_inputs();
Q
qijun 已提交
187 188
    Y->set_parameter("Y");
    Y->add_arguments("b");
Y
Yang Yang 已提交
189 190 191
    auto Out = op->add_outputs();
    Out->set_parameter("Out");
    Out->add_arguments("c");
Q
qijun 已提交
192

193
    add_fetch_op("c", dim, 0, root_block);
Q
qijun 已提交
194
  }
Y
Yang Yang 已提交
195

Q
qijun 已提交
196 197 198 199
 protected:
  ProgramDesc pdesc_;
};

Q
qijun 已提交
200 201 202 203 204 205 206
class ExecutorTesterFeed : public ::testing::Test {
 public:
  virtual void SetUp() override {
    auto root_block = pdesc_.add_blocks();
    root_block->set_idx(0);
    root_block->set_parent_idx(-1);

207 208 209 210
    std::vector<int> dim{6};

    add_feed_op("a", dim, 0, root_block);
    add_feed_op("b", dim, 1, root_block);
Q
qijun 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

    auto c = root_block->add_vars();
    c->set_name("c");
    auto c_lt = c->mutable_lod_tensor();
    c_lt->set_data_type(paddle::framework::DataType::FP32);

    auto op = root_block->add_ops();
    op->set_type("elementwise_add");
    auto X = op->add_inputs();
    X->set_parameter("X");
    X->add_arguments("a");
    auto Y = op->add_inputs();
    Y->set_parameter("Y");
    Y->add_arguments("b");
    auto Out = op->add_outputs();
    Out->set_parameter("Out");
    Out->add_arguments("c");

229
    add_fetch_op("c", dim, 0, root_block);
Q
qijun 已提交
230

231 232
    std::vector<float> vec1 = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0};
    std::vector<float> vec2 = {4.0, 5.0, 6.0, 7.0, 8.0, 9.0};
Q
qijun 已提交
233 234 235 236 237 238 239 240 241 242
    inputs_.push_back(vec1);
    inputs_.push_back(vec2);
  }

 protected:
  ProgramDesc pdesc_;
  std::vector<std::vector<float>> inputs_;
};

TEST_F(ExecutorTesterRandom, CPU) {
Q
qijun 已提交
243
  std::vector<Place> places;
244 245 246 247 248 249 250 251
  CPUPlace cpu_place;
  places.push_back(cpu_place);

  // We have a global Scope and BuddyAllocator, and we must ensure
  // global BuddyAllocator is initialized before global Scope. Thus,
  // global Scope will deconstruct before BuddyAllocator. Otherwise,
  // "pointer being freed was not allocated" error will appear.
  paddle::memory::Used(cpu_place);
Q
qijun 已提交
252

Y
Yang Yang 已提交
253
  Executor* executor = new Executor(places);
254 255 256 257 258 259 260 261
  executor->Run(pdesc_, GetScope());
  std::vector<std::vector<float>> result = get_fetch_variable<float>();
  for (auto& vec : result) {
    for (auto& num : vec) {
      std::cout << num << " ";
    }
    std::cout << std::endl;
  }
Q
qijun 已提交
262 263 264 265 266 267 268 269
  delete executor;
}

TEST_F(ExecutorTesterFeed, CPU) {
  std::vector<Place> places;
  CPUPlace cpu_place;
  places.push_back(cpu_place);

270 271 272 273 274 275
  // We have a global Scope and BuddyAllocator, and we must ensure
  // global BuddyAllocator is initialized before global Scope. Thus,
  // global Scope will deconstruct before BuddyAllocator. Otherwise,
  // "pointer being freed was not allocated" error will appear.
  paddle::memory::Used(cpu_place);

Q
qijun 已提交
276 277 278 279 280
  Executor* executor = new Executor(places);

  // 3 mini-batch
  for (int i = 0; i < 3; i++) {
    // need to set feed variable before Executor::Run
Q
qijun 已提交
281
    std::cout << "start mini-batch " << i << std::endl;
Q
qijun 已提交
282 283
    set_feed_variable<float>(inputs_);
    executor->Run(pdesc_, GetScope());
Q
qijun 已提交
284 285 286 287 288 289 290
    std::vector<std::vector<float>> result = get_fetch_variable<float>();
    for (auto& vec : result) {
      for (auto& num : vec) {
        std::cout << num << " ";
      }
      std::cout << std::endl;
    }
Q
qijun 已提交
291 292
  }

Q
qijun 已提交
293 294
  delete executor;
}
Y
Yang Yang 已提交
295

Q
qijun 已提交
296
#ifdef PADDLE_WITH_CUDA
Q
qijun 已提交
297 298 299 300 301
TEST_F(ExecutorTesterRandom, GPU) {
  std::vector<Place> places;
  GPUPlace gpu_place(0);
  places.push_back(gpu_place);

302 303
  paddle::memory::Used(gpu_place);

Q
qijun 已提交
304
  Executor* executor = new Executor(places);
305
  executor->Run(pdesc_, GetScope());
Q
qijun 已提交
306 307 308 309
  delete executor;
}

TEST_F(ExecutorTesterFeed, GPU) {
Q
qijun 已提交
310
  std::vector<Place> places;
Q
qijun 已提交
311 312
  GPUPlace gpu_place(0);
  places.push_back(gpu_place);
Y
Yang Yang 已提交
313

314 315
  paddle::memory::Used(gpu_place);

Q
qijun 已提交
316
  Executor* executor = new Executor(places);
Q
qijun 已提交
317

Q
qijun 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331
  // 3 mini-batch
  for (int i = 0; i < 3; i++) {
    // need to set feed variable before Executor::Run
    std::cout << "start mini-batch " << i << std::endl;
    set_feed_variable<float>(inputs_);
    executor->Run(pdesc_, GetScope());
    std::vector<std::vector<float>> result = get_fetch_variable<float>();
    for (auto& vec : result) {
      for (auto& num : vec) {
        std::cout << num << " ";
      }
      std::cout << std::endl;
    }
  }
Q
qijun 已提交
332
  delete executor;
Y
Yang Yang 已提交
333
}
Q
qijun 已提交
334
#endif