device_context.cc 10.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
11
#include "paddle/fluid/platform/device_context.h"
12

13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
#endif
22

Q
qijun 已提交
23 24 25
namespace paddle {
namespace platform {

D
dzhwinter 已提交
26 27
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
28
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
29 30 31 32 33 34
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
    PADDLE_THROW(
        "'Place' is not supported, Please re-compile with WITH_GPU "
        "option");
  }
35
  return it->second.get().get();
D
dzhwinter 已提交
36 37
}

38 39 40 41 42 43 44 45 46 47 48
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
                     return PtrType(new DevCtx(boost::get<PlaceType>(p)));
                   }));
C
chengduozh 已提交
49 50
}

D
dzhwinter 已提交
51 52 53
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
  PADDLE_ENFORCE_GT(places.size(), 0);
54
  std::set<Place> set;
Y
Yu Yang 已提交
55 56 57 58 59
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
60
#ifdef PADDLE_WITH_MKLDNN
61
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
62
#else
63
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
64
#endif
Y
Yu Yang 已提交
65
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
66
#ifdef PADDLE_WITH_CUDA
67
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
68 69
#else
      PADDLE_THROW(
D
dzhwinter 已提交
70
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
D
dzhwinter 已提交
71
          "option");
C
chengduoZH 已提交
72 73 74
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
75 76
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
77 78 79 80
#else
      PADDLE_THROW(
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
          "option");
D
dzhwinter 已提交
81 82 83 84 85
#endif
    }
  }
}

86 87 88 89
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
90
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
91 92 93 94 95 96 97
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
98
Place CPUDeviceContext::GetPlace() const { return place_; }
99

100
#ifdef PADDLE_WITH_CUDA
101

Q
init  
qijun 已提交
102 103 104 105 106 107 108
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
109
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
110 111 112 113 114 115 116 117 118 119 120 121
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
Q
qijun 已提交
122
    return paddle::memory::Alloc(place_, num_bytes);
Q
init  
qijun 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  }

  void deallocate(void* buffer) const override {
    paddle::memory::Free(place_, buffer);
  }

  void* scratchpad() const override {
    if (scratch_ == NULL) {
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
      PADDLE_ENFORCE(
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
148
  CUDAPlace place_;
Q
init  
qijun 已提交
149 150
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
151
  mutable void* scratch_;
Q
init  
qijun 已提交
152 153 154
  mutable unsigned int* semaphore_;
};

S
sneaxiy 已提交
155 156 157 158 159
CudnnHolder::CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place)
    : workspace_(nullptr), workspace_len_(0), stream_(stream), place_(place) {
  PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
  PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, *stream_));
}
160

S
sneaxiy 已提交
161 162 163 164
CudnnHolder::~CudnnHolder() {
  PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
  if (workspace_ != nullptr) {
    paddle::memory::Free(place_, workspace_);
165
  }
S
sneaxiy 已提交
166
}
167

S
sneaxiy 已提交
168 169 170
void CudnnHolder::ReallocateWorkspace(size_t required_workspace_len) {
  if (required_workspace_len <= workspace_len_) {
    return;
171
  }
S
sneaxiy 已提交
172 173 174 175
  if (workspace_ != nullptr) {
    // Maybe someone is using the current workspace
    PADDLE_ENFORCE(cudaStreamSynchronize(*stream_));
    paddle::memory::Free(place_, workspace_);
176
  }
S
sneaxiy 已提交
177 178
  workspace_ = paddle::memory::Alloc(place_, required_workspace_len);
  workspace_len_ = required_workspace_len;
S
sneaxiy 已提交
179
}
180 181 182

CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
    : place_(place), cudnn_holder_(nullptr) {
183
  SetDeviceId(place_.device);
C
chengduo 已提交
184 185 186
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
Q
init  
qijun 已提交
187 188 189
  PADDLE_ENFORCE(cudaStreamCreate(&stream_));
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&stream_, place);
190
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
D
dzhwinter 已提交
191 192
  PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_));
  PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_));
D
dzhwinter 已提交
193
  if (dynload::HasCUDNN()) {
194
    cudnn_holder_.reset(new CudnnHolder(&stream_, place));
D
dzhwinter 已提交
195
  }
S
sneaxiy 已提交
196

C
chengduo 已提交
197 198 199
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

200 201 202 203 204 205
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
                          << ", CUDA Capability: " << compute_capability_
                          << ", Driver Version: " << driver_version_ / 1000
                          << "." << (driver_version_ % 100) / 10
                          << ", Runtime Version: " << runtime_version_ / 1000
                          << "." << (runtime_version_ % 100) / 10;
D
dzhwinter 已提交
206

D
dzhwinter 已提交
207
#ifndef _WIN32
S
sneaxiy 已提交
208
  callback_manager_.reset(new StreamCallbackManager(stream_));
D
dzhwinter 已提交
209
#endif  // NOT WIN32
210 211 212 213
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
L
liaogang 已提交
214
  Wait();
S
sneaxiy 已提交
215
  WaitStreamCallback();
216
  PADDLE_ENFORCE(dynload::cublasDestroy(cublas_handle_));
217 218
  eigen_stream_.reset();
  eigen_device_.reset();
Q
init  
qijun 已提交
219
  PADDLE_ENFORCE(cudaStreamDestroy(stream_));
220 221
}

L
liaogang 已提交
222
Place CUDADeviceContext::GetPlace() const { return place_; }
223

L
liaogang 已提交
224
void CUDADeviceContext::Wait() const {
Q
init  
qijun 已提交
225
  PADDLE_ENFORCE(cudaStreamSynchronize(stream_));
226 227 228
  PADDLE_ENFORCE(cudaGetLastError());
}

K
Kexin Zhao 已提交
229
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
230
  return compute_capability_;
K
Kexin Zhao 已提交
231 232
}

233
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
234
  return multi_process_ * max_threads_per_mp_;
235 236
}

237 238 239 240
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
  return eigen_device_.get();
}

241
cublasHandle_t CUDADeviceContext::cublas_handle() const {
242 243 244
  return cublas_handle_;
}

245 246 247 248
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return cudnn_holder_->cudnn_handle();
}

S
sneaxiy 已提交
249 250
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
  return CudnnWorkspaceHandle(cudnn_holder_.get());
251
}
252

253
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
Q
qijun 已提交
254

C
chengduoZH 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
269
#endif
Q
qijun 已提交
270

T
tensor-tang 已提交
271 272
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
273 274 275
    : CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobmap_() {
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
276 277
}

S
Sylwester Fraczek 已提交
278 279 280 281 282 283 284 285
namespace {
// Current thread's id.
thread_local int cur_thread_id = 0;
}

void set_cur_thread_id(int tid) { cur_thread_id = tid; }
int get_cur_thread_id(void) { return cur_thread_id; }

286 287
void MKLDNNDeviceContext::SetBlob(const std::string& name,
                                  std::shared_ptr<void> data) const {
288 289 290 291
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;

  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
292

293
  std::lock_guard<std::mutex> lock(*p_mutex_.get());
T
tensor-tang 已提交
294

295 296 297 298 299 300 301
  // Find KeyBlob for current thread
  auto map_it = pMap->find(tid);

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
    pBlob = std::shared_ptr<KeyBlob>(new KeyBlob());
    (*pMap)[tid] = pBlob;
302
  } else {
303
    pBlob = map_it->second;
304
  }
T
tensor-tang 已提交
305

306 307
  // Find Key in found (or newly created) KeyBlob
  auto key_it = pBlob->find(name);
T
tensor-tang 已提交
308

309 310
  if (key_it == pBlob->end()) {
    (*pBlob)[name] = data;  // create new blob
311
  } else {
312
    key_it->second = data;  // set data to existing blob
313
  }
T
tensor-tang 已提交
314

315
  // lock will be automatically released when out of scope
316
  return;
T
tensor-tang 已提交
317 318
}

319 320
std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
    const std::string& name) const {
321 322
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
323

324
  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
325

326 327 328 329 330 331 332 333 334 335 336
  std::lock_guard<std::mutex> lock(*p_mutex_.get());

  // Find KeyBlob for current thread firstly
  auto map_it = pMap->find(tid);
  if (map_it == pMap->end()) return nullptr;
  pBlob = map_it->second;

  // Find Blob via name
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) return nullptr;
337

338 339
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
340 341 342 343
}

#endif

Q
qijun 已提交
344
}  // namespace platform
Q
qijun 已提交
345
}  // namespace paddle