test_imperative_optimizer.py 7.8 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
M
minqiyang 已提交
18
import six
M
minqiyang 已提交
19

M
minqiyang 已提交
20
import paddle
M
minqiyang 已提交
21 22
import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
23
from paddle.fluid.optimizer import SGDOptimizer
24 25
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
from paddle.fluid.imperative.base import to_variable
M
minqiyang 已提交
26
from test_imperative_base import new_program_scope
27 28


X
Xin Pan 已提交
29
class SimpleImgConvPool(fluid.imperative.Layer):
30 31
    def __init__(self,
                 num_channels,
32
                 num_filters,
M
minqiyang 已提交
33
                 filter_size,
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
        super(SimpleImgConvPool, self).__init__()

        self._conv2d = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)
M
minqiyang 已提交
68

69 70 71 72
    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
M
minqiyang 已提交
73 74


X
Xin Pan 已提交
75
class MNIST(fluid.imperative.Layer):
76
    def __init__(self, param_attr=None, bias_attr=None):
M
minqiyang 已提交
77
        super(MNIST, self).__init__()
M
minqiyang 已提交
78

79
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
M
minqiyang 已提交
80
            1, 20, 5, 2, 2, act="relu")
81 82

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
M
minqiyang 已提交
83
            20, 50, 5, 2, 2, act="relu")
84

M
minqiyang 已提交
85
        pool_2_shape = 50 * 4 * 4
86 87
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
M
minqiyang 已提交
88
        self._fc = FC(10,
89 90
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
M
minqiyang 已提交
91 92
                              loc=0.0, scale=scale)),
                      act="softmax")
M
minqiyang 已提交
93 94

    def forward(self, inputs):
95 96
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
97
        x = self._fc(x)
M
minqiyang 已提交
98 99 100 101
        return x


class TestImperativeMnist(unittest.TestCase):
M
minqiyang 已提交
102
    def test_mnist_float32(self):
M
minqiyang 已提交
103
        seed = 90
M
minqiyang 已提交
104 105
        epoch_num = 1
        batch_num = 200
M
minqiyang 已提交
106
        with fluid.imperative.guard():
M
minqiyang 已提交
107 108 109
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
110
            mnist = MNIST()
M
minqiyang 已提交
111
            sgd = SGDOptimizer(learning_rate=1e-3)
M
minqiyang 已提交
112
            train_reader = paddle.batch(
M
minqiyang 已提交
113
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
M
minqiyang 已提交
114

M
minqiyang 已提交
115
            dy_param_init_value = {}
M
minqiyang 已提交
116 117 118 119 120 121 122
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
                    dy_x_data = np.array(
                        [x[0].reshape(1, 28, 28)
                         for x in data]).astype('float32')
                    y_data = np.array(
                        [x[1] for x in data]).astype('int64').reshape(128, 1)
M
minqiyang 已提交
123

M
minqiyang 已提交
124 125 126
                    img = to_variable(dy_x_data)
                    label = to_variable(y_data)
                    label._stop_gradient = True
M
minqiyang 已提交
127

M
minqiyang 已提交
128 129 130
                    cost = mnist(img)
                    loss = fluid.layers.cross_entropy(cost, label)
                    avg_loss = fluid.layers.mean(loss)
M
minqiyang 已提交
131

M
minqiyang 已提交
132
                    dy_out = avg_loss._numpy()
M
minqiyang 已提交
133

M
minqiyang 已提交
134 135 136 137
                    if epoch == 0 and batch_id == 0:
                        for param in fluid.default_main_program().global_block(
                        ).all_parameters():
                            dy_param_init_value[param.name] = param._numpy()
M
minqiyang 已提交
138

M
minqiyang 已提交
139 140 141
                    avg_loss._backward()
                    sgd.minimize(avg_loss)
                    mnist.clear_gradients()
M
minqiyang 已提交
142

M
minqiyang 已提交
143
                    fluid.default_main_program().global_block()._clear_block()
M
minqiyang 已提交
144

M
minqiyang 已提交
145 146 147 148
                    dy_param_value = {}
                    for param in fluid.default_main_program().global_block(
                    ).all_parameters():
                        dy_param_value[param.name] = param._numpy()
M
minqiyang 已提交
149

M
minqiyang 已提交
150 151 152
        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
M
minqiyang 已提交
153

M
minqiyang 已提交
154 155
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
M
minqiyang 已提交
156

M
minqiyang 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
            mnist = MNIST()
            sgd = SGDOptimizer(learning_rate=1e-3)
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
            loss = fluid.layers.cross_entropy(cost, label)
            avg_loss = fluid.layers.mean(loss)
            sgd.minimize(avg_loss)

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
            for param in fluid.default_startup_program().global_block(
            ).all_parameters():
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
                    static_x_data = np.array(
                        [x[0].reshape(1, 28, 28)
                         for x in data]).astype('float32')
                    y_data = np.array(
                        [x[1] for x in data]).astype('int64').reshape([128, 1])

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={"pixel": static_x_data,
                              "label": y_data},
                        fetch_list=fetch_list)

                    static_param_value = {}
                    static_out = out[0]
                    for i in range(1, len(out)):
                        static_param_value[static_param_name_list[i - 1]] = out[
                            i]

M
minqiyang 已提交
205 206
        self.assertTrue(np.allclose(dy_x_data.all(), static_x_data.all()))

M
minqiyang 已提交
207 208 209 210 211 212
        for key, value in six.iteritems(static_param_init_value):
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))

        self.assertTrue(np.allclose(static_out, dy_out))

        for key, value in six.iteritems(static_param_value):
M
minqiyang 已提交
213
            self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-6))
M
minqiyang 已提交
214 215 216 217


if __name__ == '__main__':
    unittest.main()