“45c44b5ff9caa743ed9c2bfd44307c536c9caf1e”上不存在“drivers/git@gitcode.net:openeuler/kernel.git”
elementwise_op_function.h 20.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/transform.h"
20

C
chengduoZH 已提交
21 22
#ifdef __NVCC__
#include <thrust/iterator/iterator_adaptor.h>
C
chengduoZH 已提交
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yu Yang 已提交
24
constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024;
C
chengduoZH 已提交
25 26
#endif

Y
Yi Wang 已提交
27
#include "paddle/fluid/operators/math/math_function.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/platform/for_range.h"
29 30 31 32 33 34 35 36 37 38

namespace paddle {
namespace operators {

/*
 * Out = X ⊙ Y
 * If Y's shape does not match X' shape, they will be reshaped.
 * For example:
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
C
chengduo 已提交
39
 *    x.shape(2, 12, 5) * y.shape(1, 12, 1).broadcast(2, 12, 5)
40 41
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
C
chengduo 已提交
42
 *    x.shape(6, 20, 1) * y.shape(1, 20, 1).broadcast(6, 20, 1)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
 */
inline void get_mid_dims(const framework::DDim& x_dims,
                         const framework::DDim& y_dims, const int axis,
                         int& pre, int& n, int& post) {
  pre = 1;
  n = 1;
  post = 1;
  for (int i = 0; i < axis; ++i) {
    pre *= x_dims[i];
  }

  for (int i = 0; i < y_dims.size(); ++i) {
    PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
                      "Broadcast dimension mismatch.");
    n *= y_dims[i];
  }

  for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
    post *= x_dims[i];
  }
}

65 66 67 68 69 70 71 72 73 74 75 76 77
inline void trim_trailing_singular_dims(framework::DDim& dims) {
  // Remove trailing dimensions of size 1 for y
  auto actual_dims_size = dims.size();
  for (; actual_dims_size != 0; --actual_dims_size) {
    if (dims[actual_dims_size - 1] != 1) break;
  }
  if (actual_dims_size != dims.size()) {
    auto actual_dims = framework::vectorize(dims);
    actual_dims.resize(actual_dims_size);
    dims = framework::make_ddim(actual_dims);
  }
}

Q
QI JUN 已提交
78
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
79
class RowwiseTransformIterator;
Q
QI JUN 已提交
80
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
81
class MidWiseTransformIterator;
C
chengduoZH 已提交
82 83

template <typename T>
Q
QI JUN 已提交
84
class RowwiseTransformIterator<T, platform::CPUDeviceContext> {
C
chengduoZH 已提交
85
 public:
C
chengduoZH 已提交
86 87
  RowwiseTransformIterator(const T* ptr, int n) : ptr_(ptr), i_(0), n_(n) {}

Q
QI JUN 已提交
88
  RowwiseTransformIterator<T, platform::CPUDeviceContext>& operator++() {
C
chengduoZH 已提交
89
    ++i_;
C
chengduoZH 已提交
90 91 92
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
C
chengduoZH 已提交
93 94 95
    return *this;
  }

Q
QI JUN 已提交
96 97
  bool operator==(const RowwiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
98
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
99 100
  }

Q
QI JUN 已提交
101 102
  bool operator!=(const RowwiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
103
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
104 105 106 107
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
108
 private:
C
chengduoZH 已提交
109 110
  const T* ptr_;
  int i_;
C
chengduoZH 已提交
111
  int64_t n_;
C
chengduoZH 已提交
112 113 114
};

template <typename T>
Q
QI JUN 已提交
115
class MidWiseTransformIterator<T, platform::CPUDeviceContext> {
C
chengduoZH 已提交
116
 public:
C
chengduoZH 已提交
117 118 119
  MidWiseTransformIterator(const T* ptr, int n, int post)
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

Q
QI JUN 已提交
120
  MidWiseTransformIterator<T, platform::CPUDeviceContext>& operator++() {
C
chengduoZH 已提交
121
    ++j_;
C
chengduoZH 已提交
122 123
    if (UNLIKELY(j_ == post_)) {
      ++i_;
C
refine  
chengduoZH 已提交
124
      j_ = 0;
C
chengduoZH 已提交
125 126 127
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
C
chengduoZH 已提交
128
    }
C
chengduoZH 已提交
129 130 131
    return *this;
  }

Q
QI JUN 已提交
132 133
  bool operator==(const MidWiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
134
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
135 136
  }

Q
QI JUN 已提交
137 138
  bool operator!=(const MidWiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
139
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
140 141 142 143
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
144
 private:
C
chengduoZH 已提交
145
  const T* ptr_;
C
refine  
chengduoZH 已提交
146
  int64_t i_;
C
chengduoZH 已提交
147 148
  int64_t j_;
  int64_t n_;
C
refine  
chengduoZH 已提交
149
  int64_t post_;
C
chengduoZH 已提交
150 151
};

C
chengduoZH 已提交
152 153
#ifdef __NVCC__
template <typename T>
Q
QI JUN 已提交
154
class RowwiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
155
    : public thrust::iterator_adaptor<
Q
QI JUN 已提交
156
          RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*> {
C
chengduoZH 已提交
157 158
 public:
  typedef thrust::iterator_adaptor<
Q
QI JUN 已提交
159
      RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
C
chengduoZH 已提交
160
      super_t;
C
chengduoZH 已提交
161
  HOSTDEVICE RowwiseTransformIterator(const T* x, int n)
C
chengduoZH 已提交
162 163 164 165 166 167
      : super_t(x), begin_(x), n_(n){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
168
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
169 170 171 172 173
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
Q
QI JUN 已提交
174
class MidWiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
175
    : public thrust::iterator_adaptor<
Q
QI JUN 已提交
176
          MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*> {
C
chengduoZH 已提交
177 178
 public:
  typedef thrust::iterator_adaptor<
Q
QI JUN 已提交
179
      MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
C
chengduoZH 已提交
180
      super_t;
C
chengduoZH 已提交
181
  HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post)
C
chengduoZH 已提交
182 183 184 185 186 187 188
      : super_t(x), begin_(x), n_(n), post_(post){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
189
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
190 191 192 193 194
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

195 196
template <typename Functor, typename T, typename DeviceContext,
          typename OutType = T>
C
chengduoZH 已提交
197 198
class TransformFunctor {
 public:
C
chengduoZH 已提交
199
  TransformFunctor(const framework::Tensor* x, const framework::Tensor* y,
Q
QI JUN 已提交
200
                   framework::Tensor* z, const DeviceContext& ctx, Functor func)
C
chengduoZH 已提交
201 202
      : x_(x->data<T>()),
        y_(y->data<T>()),
203
        z_(z->mutable_data<OutType>(ctx.GetPlace())),
C
chengduoZH 已提交
204 205 206 207 208
        nx_(x->numel()),
        ctx_(ctx),
        func_(func) {}

  inline void Run() const {
Q
QI JUN 已提交
209
    platform::Transform<DeviceContext> trans;
C
chengduoZH 已提交
210
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
C
chengduoZH 已提交
211 212 213
  }

  inline void RunRowWise(int n, int pre) const {
Q
QI JUN 已提交
214 215 216
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator<T, DeviceContext>(y_, n),
          z_, func_);
C
chengduoZH 已提交
217 218 219
  }

  inline void RunMidWise(int n, int pre, int post) const {
Q
QI JUN 已提交
220 221 222
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_,
          MidWiseTransformIterator<T, DeviceContext>(y_, n, post), z_, func_);
C
chengduoZH 已提交
223 224
  }

C
chengduoZH 已提交
225
 private:
C
chengduoZH 已提交
226 227
  const T* x_;
  const T* y_;
228
  OutType* z_;
C
chengduoZH 已提交
229
  int64_t nx_;
Q
QI JUN 已提交
230
  const DeviceContext& ctx_;
C
chengduoZH 已提交
231 232 233
  Functor func_;
};

234 235
#define EIGEN_FUNCTOR(name, eigen_op)                                          \
  struct Eigen##name##Functor {                                                \
Q
QI JUN 已提交
236
    template <typename DeviceContext, typename T>                              \
237 238 239 240 241 242
    inline void Run(const framework::Tensor* x, const framework::Tensor* y,    \
                    framework::Tensor* z,                                      \
                    const framework::ExecutionContext& ctx) {                  \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
Q
QI JUN 已提交
243 244 245
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_e);                                                  \
246
    }                                                                          \
Q
QI JUN 已提交
247
    template <typename DeviceContext, typename T>                              \
248 249 250 251 252 253 254 255 256 257
    inline void RunBroadCast(const framework::Tensor* x,                       \
                             const framework::Tensor* y, framework::Tensor* z, \
                             const framework::ExecutionContext& ctx, int pre,  \
                             int n) {                                          \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))                  \
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))             \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
258 259 260
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
261
    }                                                                          \
Q
QI JUN 已提交
262
    template <typename DeviceContext, typename T>                              \
263 264 265 266 267 268 269 270 271 272 273
    inline void RunBroadCast2(const framework::Tensor* x,                      \
                              const framework::Tensor* y,                      \
                              framework::Tensor* z,                            \
                              const framework::ExecutionContext& ctx, int pre, \
                              int n, int post) {                               \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))               \
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))       \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
274 275 276
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    }                                                                          \
  }

#define EIGEN_ADD(x, y) ((x) + (y))
EIGEN_FUNCTOR(Add, EIGEN_ADD);

#define EIGEN_SUB(x, y) ((x) - (y))
EIGEN_FUNCTOR(Sub, EIGEN_SUB);

#define EIGEN_MUL(x, y) ((x) * (y))
EIGEN_FUNCTOR(Mul, EIGEN_MUL);

#define EIGEN_DIV(x, y) ((x) / (y))
EIGEN_FUNCTOR(Div, EIGEN_DIV);

Y
Yu Yang 已提交
292 293 294 295 296 297 298 299 300 301 302 303
template <typename T, typename DX_OP, typename DY_OP>
struct ElemwiseGradNoBroadcast {
  const T* x_;
  const T* y_;
  const T* out_;
  const T* dout_;

  HOSTDEVICE void operator()(size_t i) {
    if (dx_ != nullptr) {
      dx_[i] = dx_op_(x_[i], y_[i], out_[i], dout_[i]);
    }
    if (dy_ != nullptr) {
C
chengduoZH 已提交
304
      dy_[i] = dy_op_(x_[i], y_[i], out_[i], dout_[i]);
Y
Yu Yang 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
    }
  }

  DX_OP dx_op_;
  DY_OP dy_op_;
  T* dx_;
  T* dy_;
};

template <typename T, typename DX_OP, typename DY_OP>
static void ElemwiseGradBroadcast1CPU(const T* x, const T* y, const T* out,
                                      const T* dout, int h, int w, DX_OP dx_op,
                                      DY_OP dy_op, T* dx, T* dy) {
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int x_offset = i * w + j;
      if (dx != nullptr) {
        dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }
      if (dy != nullptr) {
        T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
        if (i == 0) {
          dy[j] = tmp;
        } else {
          dy[j] += tmp;
        }
      }
    }
  }
}
#ifdef __NVCC__
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast1CUDAKernel(
    const T* x, const T* y, const T* out, const T* dout, int h, int w,
    DX_OP dx_op, DY_OP dy_op, T* dx, T* dy) {
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
C
chengduoZH 已提交
343
  T val = 0;
Y
Yu Yang 已提交
344 345 346 347 348 349 350

  do {
    int x_offset = i * w + j;
    if (dx) {
      dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
    }
    if (dy) {
C
chengduoZH 已提交
351
      val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
Y
Yu Yang 已提交
352 353 354 355 356
    }
    i += ELEMWISE_MAX_BLOCK_DIM;
  } while (i < h);

  if (dy) {
C
chengduoZH 已提交
357 358
    h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
    val = platform::reduceSum(val, tid, h);
Y
Yu Yang 已提交
359
    if (threadIdx.x == 0) {
C
chengduoZH 已提交
360
      dy[j] = val;
Y
Yu Yang 已提交
361 362 363 364 365 366 367 368 369 370 371
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP>
static void ElemwiseGradBroadcast1CUDA(cudaStream_t stream, const T* x,
                                       const T* y, const T* out, const T* dout,
                                       int h, int w, DX_OP dx_op, DY_OP dy_op,
                                       T* dx, T* dy) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
  int gird_size = w;
C
chengduoZH 已提交
372 373
  ElemwiseGradBroadcast1CUDAKernel<<<gird_size, block_size, 0, stream>>>(
      x, y, out, dout, h, w, dx_op, dy_op, dx, dy);
Y
Yu Yang 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
}

#endif

template <typename T, typename DX_OP, typename DY_OP>
static void ElemwiseGradBroadcast2CPU(const T* x, const T* y, const T* out,
                                      const T* dout, int pre, int n, int post,
                                      DX_OP dx_op, DY_OP dy_op, T* dx, T* dy) {
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int x_offset = i * n * post + j * post + k;
        if (dx != nullptr) {
          dx[x_offset] =
              dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
        }
        if (dy != nullptr) {
          T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
          if (i == 0 && k == 0) {
            dy[j] = tmp;
          } else {
            dy[j] += tmp;
          }
        }
      }
    }
  }
}

#ifdef __NVCC__
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast2CUDAKernel(
    const T* x, const T* y, const T* out, const T* dout, int pre, int n,
    int post, DX_OP dx_op, DY_OP dy_op, T* dx, T* dy) {
  int tid = threadIdx.x;
  int j = blockIdx.x;

C
chengduoZH 已提交
411
  T val = 0;
Y
Yu Yang 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425
  int ttid = tid;

  while (true) {
    int i = ttid / post;
    int k = ttid % post;
    if (i >= pre) break;

    int x_offset = i * n * post + j * post + k;

    if (dx != nullptr) {
      dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
    }

    if (dy != nullptr) {
C
chengduoZH 已提交
426
      val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
Y
Yu Yang 已提交
427 428 429 430 431 432
    }

    ttid += ELEMWISE_MAX_BLOCK_DIM;
  }

  if (dy) {
C
chengduoZH 已提交
433 434 435
    int h = pre * post;
    h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
    val = platform::reduceSum(val, tid, h);
C
chengduoZH 已提交
436
    if (threadIdx.x == 0) {
C
chengduoZH 已提交
437
      dy[j] = val;
Y
Yu Yang 已提交
438 439 440 441 442 443 444 445 446 447 448
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP>
static void ElemwiseGradBroadcast2CUDA(cudaStream_t stream, const T* x,
                                       const T* y, const T* out, const T* dout,
                                       int pre, int n, int post, DX_OP dx_op,
                                       DY_OP dy_op, T* dx, T* dy) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
C
chengduoZH 已提交
449 450
  ElemwiseGradBroadcast2CUDAKernel<<<gird_size, block_size, 0, stream>>>(
      x, y, out, dout, pre, n, post, dx_op, dy_op, dx, dy);
Y
Yu Yang 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
}

#endif

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void ElemwiseGradCompute(const framework::ExecutionContext& ctx,
                         const framework::Tensor& x, const framework::Tensor& y,
                         const framework::Tensor& out,
                         const framework::Tensor& dout, int axis,
                         framework::Tensor* dx, framework::Tensor* dy,
                         DX_OP dx_op, DY_OP dy_op) {
  if (x.dims() == y.dims()) {
    size_t N = static_cast<size_t>(framework::product(x.dims()));
    platform::ForRange<DeviceContext> for_range(
        ctx.template device_context<DeviceContext>(), N);
    for_range(ElemwiseGradNoBroadcast<T, DX_OP, DY_OP>{
        x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), dx_op, dy_op,
        dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
        dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace())});
  } else {  // Y is a scalar
    auto x_dim = x.dims();
    auto y_dim = y.dims();

    axis = (axis == -1 ? x_dim.size() - y_dim.size() : axis);
475 476 477
    trim_trailing_singular_dims(y_dim);
    axis = (y_dim.size() == 0) ? x_dim.size() : axis;

Y
Yu Yang 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
    int pre, n, post;
    get_mid_dims(x_dim, y_dim, axis, pre, n, post);
    if (post == 1) {
      int h = pre;
      int w = n;
      if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
        ElemwiseGradBroadcast1CUDA(
            ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
            y.data<T>(), out.data<T>(), dout.data<T>(), h, w, dx_op, dy_op,
            dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
            dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
      } else {
        ElemwiseGradBroadcast1CPU(
            x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), h, w,
            dx_op, dy_op,
            dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
            dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
      }
    } else {
      if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
        ElemwiseGradBroadcast2CUDA(
            ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
            y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, post, dx_op,
            dy_op,
            dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
            dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
      } else {
        ElemwiseGradBroadcast2CPU(
            x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), pre, n,
            post, dx_op, dy_op,
            dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
            dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
      }
    }
  }
};

Q
QI JUN 已提交
519
template <typename DeviceContext, typename T, typename functor,
F
fengjiayi 已提交
520
          typename broadcastfunctor, typename broadcast2functor>
C
chengduoZH 已提交
521 522 523 524 525 526
void ElementwiseGradCompute(const framework::ExecutionContext& ctx,
                            const framework::Tensor* x,
                            const framework::Tensor* y,
                            const framework::Tensor* out,
                            const framework::Tensor* dout, int axis,
                            framework::Tensor* dx, framework::Tensor* dy) {
Q
QI JUN 已提交
527
  auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

  auto x_dims = x->dims();
  auto y_dims = y->dims();

  if (dx) {
    dx->mutable_data<T>(ctx.GetPlace());
  }
  if (dy) {
    dy->mutable_data<T>(ctx.GetPlace());
  }

  if (x_dims == y_dims) {
    functor f;
    f(place, x, y, out, dx, dy, dout);
    return;
  }

  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
546 547
  trim_trailing_singular_dims(y_dims);
  axis = (y_dims.size() == 0) ? x_dims.size() : axis;
548 549 550 551 552 553 554 555 556 557 558 559 560 561

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);

  if (post == 1) {
    broadcastfunctor f;
    f(place, x, y, out, dx, dy, dout, pre, n);
    return;
  } else {
    broadcast2functor f;
    f(place, x, y, out, dx, dy, dout, pre, n, post);
    return;
  }
}
F
fengjiayi 已提交
562

563 564
template <typename Functor, typename DeviceContext, typename T,
          typename OutType = T>
C
chengduoZH 已提交
565 566
void ElementwiseComputeEx(const framework::ExecutionContext& ctx,
                          const framework::Tensor* x,
C
chengduoZH 已提交
567
                          const framework::Tensor* y, int axis, Functor func,
C
chengduoZH 已提交
568
                          framework::Tensor* z) {
569
  TransformFunctor<Functor, T, DeviceContext, OutType> functor(
C
chengduoZH 已提交
570
      x, y, z, ctx.template device_context<DeviceContext>(), func);
F
fengjiayi 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584

  auto x_dims = x->dims();
  auto y_dims = y->dims();
  PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
                    "Rank of first input must >= rank of second input.");

  if (x_dims == y_dims) {
    functor.Run();
    return;
  }

  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
  PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                 "Axis should be in range [0, x_dims)");
585 586
  trim_trailing_singular_dims(y_dims);
  axis = (y_dims.size() == 0) ? x_dims.size() : axis;
F
fengjiayi 已提交
587 588 589 590 591 592 593 594 595 596 597 598

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);
  if (post == 1) {
    functor.RunRowWise(n, pre);
    return;
  } else {
    functor.RunMidWise(n, pre, post);
    return;
  }
}

599 600
}  // namespace operators
}  // namespace paddle