test_backward.py 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle.fluid as fluid
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
import numpy as np


class BackwardNet(object):
    """
    Abstract Base Class.
    All Net inherited this Class should implement two functions:
        build_model: build net to test the logic of backward
        init_data: fake input data to test all programs.
    """

    def __init__(self):
        self.stop_gradient_grad_vars = set()
        self.no_grad_vars = set()
        self.params_names = set()
        self.op_path = []

    def build_model(self):
        """
        Build net to test the logic of backward.
        :return: loss
        """
        raise NotImplementedError

    def init_data(self):
        """
        Fake input data to test all programs.
        :return: dict, {'var_name': var_data}
        """
        raise NotImplementedError
49 50


51
class TestBackward(unittest.TestCase):
52 53 54 55 56 57 58 59
    """
    All related TestClass should inherit this class,
    and only implement test_backward function.
    """

    def _check_all(self, net):
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
60 61 62 63 64 65
        exe = fluid.Executor(place)

        main = fluid.Program()
        startup = fluid.Program()

        with fluid.program_guard(main, startup):
66 67
            loss = net.build_model()
            self._check_backward(loss, main)
68 69 70

            optimizer = fluid.optimizer.SGD(learning_rate=0.1)
            optimizer.minimize(loss)
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
            exe.run(startup)
            exe.run(feed=net.init_data())

    def _check_backward(self, loss, main_program):
        global_block_idx = self.global_block_idx
        params_grads = self._check_params_grad(loss)
        # 1.1 get_stop_gradients
        no_grad_dict = self._check_stop_gradient(main_program)
        # 1.2 find_op_path
        op_path, block_no_grad_set = self._check_op_path(
            main_program.block(global_block_idx), [loss], [], no_grad_dict)
        # 1.3 _find_no_grad_vars
        no_grad_vars = self._check_find_no_grad_vars(
            main_program.block(global_block_idx), op_path, [loss],
            block_no_grad_set)
        # update no_grad_dict
        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[global_block_idx].update(
            list(map(fluid.backward._append_grad_suffix_, block_no_grad_set)))

    def _check_params_grad(self, loss, parameter_list=None, no_grad_set=None):
        params_grads = fluid.backward.append_backward(loss, parameter_list,
                                                      no_grad_set)
        params_names = set(
            [param_var.name for (param_var, grad_var) in params_grads])
        self.assertSetEqual(params_names, self.net.params_names)

        return params_grads

    def _check_stop_gradient(self, program):
        no_grad_dict = fluid.backward._get_stop_gradients_(program)
        if no_grad_dict is not None and isinstance(no_grad_dict, dict):
            self.assertSetEqual(no_grad_dict[self.global_block_idx],
                                self.net.stop_gradient_grad_vars)

        return no_grad_dict

    def _check_op_path(self, root_block, outputs, inputs=[], no_grad_dict=None):
        if no_grad_dict is None or not isinstance(no_grad_dict, dict):
            block_no_grad_set = None
        else:
            block_no_grad_set = set(
                map(fluid.backward._strip_grad_suffix_, no_grad_dict[
                    self.global_block_idx]))
        op_path = fluid.backward._find_op_path_(root_block, outputs, inputs,
                                                block_no_grad_set)
        op_types = [op.type for op in op_path]
        self.assertListEqual(op_types, self.net.op_path)

        return op_path, block_no_grad_set

    def _check_find_no_grad_vars(self, root_block, op_path, targets,
                                 block_no_grad_set):
        no_grad_vars = fluid.backward._find_no_grad_vars(
            root_block, op_path, targets, block_no_grad_set)
        self.assertSetEqual(no_grad_vars, self.net.no_grad_vars)

        return no_grad_vars


class SimpleNet(BackwardNet):
    def __init__(self):
        super(BackwardNet, self).__init__()
        self.stop_gradient_grad_vars = set([
            u'x_no_grad@GRAD', u'x2_no_grad@GRAD', u'x3_no_grad@GRAD',
            u'label_no_grad@GRAD'
        ])
        self.no_grad_vars = set()
        self.params_names = set([u'w2v', u'fc_predict.b_0', u'fc_w'])
        self.op_path = [
            u'lookup_table_v2',
            u'lookup_table_v2',  # embedding
            u'elementwise_add',  # merge
            u'mul',
            u'elementwise_add',
            u'softmax',  # fc
            u'elementwise_sub',
            u'square',
            u'mean'
        ]  # loss
        self.shape = [16, 50]

    def init_data(self):
        assert len(self.shape) == 2
        x = np.random.randint(0, 90, self.shape).astype('int64')
        x2 = np.random.randint(0, 90, self.shape).astype('int64')
        x3 = np.random.randint(0, 90, self.shape).astype('int64')
        label = np.random.random([self.shape[0], 1]).astype('float32')
        return {
            'x_no_grad': x,
            'x2_no_grad': x2,
            'x3_no_grad': x3,
            'label_no_grad': label
        }

    def build_model(self):
        # stop_gradient = True in input
        x = fluid.data(name='x_no_grad', shape=self.shape, dtype='int64')
        x2 = fluid.data(name='x2_no_grad', shape=self.shape, dtype='int64')
        x3 = fluid.data(name='x3_no_grad', shape=self.shape, dtype='int64')
        label = fluid.data(
            name='label_no_grad', shape=[self.shape[0], 1], dtype='float32')
        # shared layer, the grad of 'w2v' will be summed and renamed.
        # To test  _addup_repetitive_outputs_
        x_emb = fluid.embedding(
            x, size=[100, 64], param_attr=fluid.ParamAttr(name='w2v'))
        x2_emb = fluid.embedding(
            x2, size=[100, 64], param_attr=fluid.ParamAttr(name='w2v'))
        x3_emb = fluid.embedding(
            x3, size=[100, 64], param_attr=fluid.ParamAttr(name='w2v'))
        # merge layers
        x_merge = fluid.layers.elementwise_add(x_emb, x2_emb, name='x_add_x2')
        x2_merge = fluid.layers.elementwise_add(
            x2_emb, x3_emb, name='x2_add_x3')
        # shared fc_w
        predict = fluid.layers.fc(input=x_merge,
                                  size=1,
                                  act='softmax',
                                  param_attr=fluid.ParamAttr(name='fc_w'),
                                  name='fc_predict')
        # useless layer for calculating loss
        fc_no_use = fluid.layers.fc(input=x2_merge,
                                    size=1,
                                    act='sigmoid',
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    name='fc_no_use')
        # loss
        cost = fluid.layers.square_error_cost(input=predict, label=label)
        loss = fluid.layers.mean(cost, name='mean_loss')

        return loss


class TestSimpleNet(TestBackward):
205
    def test_backward(self):
206 207 208 209 210 211 212 213 214 215 216 217
        """
        Instantiate each NetClass to test backward.
        """
        self.global_block_idx = 0
        self.net = SimpleNet()
        self._check_all(self.net)


# TODO(Aurelius84): add conditional network test
class ConditionalNet(BackwardNet):
    def __init__(self):
        super(BackwardNet, self).__init__()
218 219 220 221


if __name__ == '__main__':
    unittest.main()