seresnext_net.py 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
16

17
fluid.core._set_eager_deletion_mode(-1, -1, False)
18

19
import paddle
20
from paddle.fluid.layers.learning_rate_scheduler import cosine_decay
21
from simple_nets import init_data
22
from seresnext_test_base import DeviceType
23
import os
24

25
os.environ['CPU_NUM'] = str(4)
26
os.environ['FLAGS_cudnn_deterministic'] = str(1)
27 28 29 30 31 32 33 34 35 36 37 38 39

# FIXME(zcd): If the neural net has dropout_op, the output of ParallelExecutor
# and Executor is different. Because, for ParallelExecutor, the dropout_op of
# the neural net will be copied N copies(N is the number of device). This will
# lead to the random numbers generated by ParallelExecutor and Executor are different.
# So, if we compare the loss of ParallelExecutor and Executor, we should remove the
# dropout_op.
remove_dropout = False

# FIXME(zcd): If the neural net has batch_norm, the output of ParallelExecutor
# and Executor is different.
remove_bn = False

40
remove_cudnn_conv = True
41

42 43 44 45 46 47 48 49 50
remove_dropout = True
remove_bn = True


def squeeze_excitation(input, num_channels, reduction_ratio):
    # pool = fluid.layers.pool2d(
    #    input=input, pool_size=0, pool_type='avg', global_pooling=True)
    conv = input
    shape = conv.shape
51 52 53
    reshape = fluid.layers.reshape(
        x=conv, shape=[-1, shape[1], shape[2] * shape[3]]
    )
54 55
    pool = fluid.layers.reduce_mean(input=reshape, dim=2)

56 57 58 59 60 61
    squeeze = fluid.layers.fc(
        input=pool, size=num_channels // reduction_ratio, act='relu'
    )
    excitation = fluid.layers.fc(
        input=squeeze, size=num_channels, act='sigmoid'
    )
62 63 64 65
    scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
    return scale


66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
def conv_bn_layer(
    input, num_filters, filter_size, stride=1, groups=1, act=None
):
    conv = fluid.layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
        padding=(filter_size - 1) // 2,
        groups=groups,
        act=None,
        use_cudnn=(not remove_cudnn_conv),
        bias_attr=False,
    )
    return (
        conv
        if remove_bn
        else fluid.layers.batch_norm(input=conv, act=act, momentum=0.1)
    )
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101


def shortcut(input, ch_out, stride):
    ch_in = input.shape[1]
    if ch_in != ch_out:
        if stride == 1:
            filter_size = 1
        else:
            filter_size = 3
        return conv_bn_layer(input, ch_out, filter_size, stride)
    else:
        return input


def bottleneck_block(input, num_filters, stride, cardinality, reduction_ratio):
    # The number of first 1x1 convolutional channels for each bottleneck build block
    # was halved to reduce the compution cost.
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    conv0 = conv_bn_layer(
        input=input, num_filters=num_filters, filter_size=1, act='relu'
    )
    conv1 = conv_bn_layer(
        input=conv0,
        num_filters=num_filters * 2,
        filter_size=3,
        stride=stride,
        groups=cardinality,
        act='relu',
    )
    conv2 = conv_bn_layer(
        input=conv1, num_filters=num_filters * 2, filter_size=1, act=None
    )
    scale = squeeze_excitation(
        input=conv2,
        num_channels=num_filters * 2,
        reduction_ratio=reduction_ratio,
    )
121 122 123 124 125 126 127 128 129 130 131 132 133 134

    short = shortcut(input, num_filters * 2, stride)

    return fluid.layers.elementwise_add(x=short, y=scale, act='relu')


img_shape = [3, 224, 224]


def SE_ResNeXt50Small(use_feed):

    img = fluid.layers.data(name='image', shape=img_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

135 136 137 138 139 140 141 142 143 144 145 146
    conv = conv_bn_layer(
        input=img, num_filters=16, filter_size=3, stride=2, act='relu'
    )
    conv = conv_bn_layer(
        input=conv, num_filters=16, filter_size=3, stride=1, act='relu'
    )
    conv = conv_bn_layer(
        input=conv, num_filters=16, filter_size=3, stride=1, act='relu'
    )
    conv = fluid.layers.pool2d(
        input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max'
    )
147 148 149 150 151 152 153 154

    cardinality = 32
    reduction_ratio = 16
    depth = [3, 4, 6, 3]
    num_filters = [128, 256, 512, 1024]

    for block in range(len(depth)):
        for i in range(depth[block]):
155 156 157 158 159 160 161
            conv = bottleneck_block(
                input=conv,
                num_filters=num_filters[block],
                stride=2 if i == 0 and block != 0 else 1,
                cardinality=cardinality,
                reduction_ratio=reduction_ratio,
            )
162 163

    shape = conv.shape
164 165 166
    reshape = fluid.layers.reshape(
        x=conv, shape=[-1, shape[1], shape[2] * shape[3]]
    )
167
    pool = fluid.layers.reduce_mean(input=reshape, dim=2)
168 169 170 171 172
    dropout = (
        pool
        if remove_dropout
        else fluid.layers.dropout(x=pool, dropout_prob=0.2, seed=1)
    )
173 174 175
    # Classifier layer:
    prediction = fluid.layers.fc(input=dropout, size=1000, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
176
    loss = paddle.mean(loss)
177 178 179 180 181
    return loss


def optimizer(learning_rate=0.01):
    optimizer = fluid.optimizer.Momentum(
182 183 184
        learning_rate=cosine_decay(
            learning_rate=learning_rate, step_each_epoch=2, epochs=1
        ),
185
        momentum=0.9,
186 187
        regularization=fluid.regularizer.L2Decay(1e-4),
    )
188 189 190 191 192 193
    return optimizer


model = SE_ResNeXt50Small


194
def batch_size(use_device):
195
    if use_device == DeviceType.CUDA:
196
        # Paddle uses 8GB P4 GPU for unittest so we decreased the batch size.
197
        return 4
198
    return 12
199 200


201
def iter(use_device):
202
    if use_device == DeviceType.CUDA:
203
        return 10
204
    return 1
205 206 207


gpu_img, gpu_label = init_data(
208
    batch_size=batch_size(use_device=DeviceType.CUDA),
209
    img_shape=img_shape,
210 211 212 213 214 215 216
    label_range=999,
)
cpu_img, cpu_label = init_data(
    batch_size=batch_size(use_device=DeviceType.CPU),
    img_shape=img_shape,
    label_range=999,
)
217 218 219 220
feed_dict_gpu = {"image": gpu_img, "label": gpu_label}
feed_dict_cpu = {"image": cpu_img, "label": cpu_label}


221
def feed_dict(use_device):
222
    if use_device == DeviceType.CUDA:
223 224
        return feed_dict_gpu
    return feed_dict_cpu