test_Matrix.cpp 8.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef PADDLE_ONLY_CPU
/**
17 18
 * This test file use autotest::AutoCompare and cmpWithArg to compares the
 * implementation of CPU and GPU member function in Matrix.cpp.
19 20 21 22 23
 */

#include <gtest/gtest.h>
#include "TestUtils.h"

H
hedaoyuan 已提交
24 25
using paddle::BaseMatrix;
using paddle::Matrix;
26
using paddle::CpuMatrix;
H
hedaoyuan 已提交
27 28
using paddle::CpuIVector;
using paddle::CpuSparseMatrix;
29
using autotest::AutoCompare;
30

31 32 33 34 35 36 37 38 39 40 41 42
void testBilinearFwdBwd(int numSamples,
                        int imgSizeH,
                        int imgSizeW,
                        int channels) {
  int inWidth = imgSizeH * imgSizeW * channels;
  int outWidth = 2 * imgSizeH * 2 * imgSizeW * channels;
  real ratioH = 0.5;
  real ratioW = 0.5;

  AutoCompare forward(numSamples, outWidth);
  CpuMatrix arg1(numSamples, inWidth);
  arg1.randomizeUniform();
43 44 45 46 47 48 49 50 51
  forward.cmpWithArg(&Matrix::bilinearForward,
                     arg1,
                     imgSizeH,
                     imgSizeW,
                     2 * imgSizeH,
                     2 * imgSizeW,
                     channels,
                     ratioH,
                     ratioW);
52 53 54 55

  AutoCompare backward(numSamples, inWidth);
  CpuMatrix arg2(numSamples, outWidth);
  arg2.randomizeUniform();
56 57 58 59 60 61 62 63 64
  backward.cmpWithArg(&Matrix::bilinearBackward,
                      arg2,
                      2 * imgSizeH,
                      2 * imgSizeW,
                      imgSizeH,
                      imgSizeW,
                      channels,
                      ratioH,
                      ratioW);
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
}

TEST(Matrix, BilinearFwdBwd) {
  for (auto numSamples : {5, 10}) {
    for (auto channels : {8, 16}) {
      for (auto imgSizeH : {14, 28}) {
        for (auto imgSizeW : {16, 30}) {
          VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
                  << " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW;
          testBilinearFwdBwd(numSamples, imgSizeH, imgSizeW, channels);
        }
      }
    }
  }
}

void testMatrixAddBias(int height, int width, real scale) {
  AutoCompare test(height, width);
  CpuMatrix arg1(1, width);
  arg1.randomizeUniform();
85 86 87 88
  test.cmpWithArg(
      static_cast<void (Matrix::*)(Matrix&, real)>(&Matrix::addBias),
      arg1,
      scale);
89 90 91 92 93 94 95 96
}

void testMatrixAddDotMulMMV(int height, int width) {
  AutoCompare test(height, width);
  CpuMatrix arg1(height, width);
  CpuMatrix arg2(1, width);
  arg1.randomizeUniform();
  arg2.randomizeUniform();
97
  test.cmpWithArg(&BaseMatrix::addDotMulMMV, arg1, arg2);
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
}

TEST(Matrix, unary) {
  for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
    for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
      VLOG(3) << " height=" << height << " width=" << width;
      testMatrixAddBias(height, width, 1.0);
      testMatrixAddBias(height, width, 3.5);
      testMatrixAddDotMulMMV(height, width);
    }
  }
}

void testMatrixAddAtOffset(int height, int width1, int width2, int offset) {
  AutoCompare test(height, width2);
  CpuMatrix arg1(height, width1);
  arg1.randomizeUniform();
115
  test.cmpWithArg(&Matrix::addAtOffset, arg1, offset);
116 117 118 119 120 121
}

void testMatrixAssignAtOffset(int height, int width1, int width2, int offset) {
  AutoCompare test(height, width2);
  CpuMatrix arg1(height, width1);
  arg1.randomizeUniform();
122
  test.cmpWithArg(&Matrix::assignAtOffset, arg1, offset);
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
}

TEST(Matrix, AtOffset) {
  for (auto height : {1, 11, 73, 128, 200}) {
    for (auto width1 : {1, 32, 100, 512, 1000}) {
      for (auto width2 : {1, 32, 100, 512, 1000}) {
        int columnOffset = 0;
        int offset = std::abs(width1 - width2);
        if (offset) {
          columnOffset = std::rand() % offset;
        }
        VLOG(3) << " height=" << height << " width1=" << width1
                << " width2=" << width2 << " columnOffset = " << columnOffset;
        testMatrixAddAtOffset(height, width1, width2, columnOffset);
        testMatrixAssignAtOffset(height, width1, width2, columnOffset);
      }
    }
  }
}

void testMatrixSelectRows(int numSamples, int tableSize, int inputDim) {
  AutoCompare test(numSamples, inputDim);
  CpuMatrix arg1(tableSize, inputDim);
  CpuIVector arg2(numSamples);
  arg1.randomizeUniform();
  arg2.rand(tableSize);
149
  test.cmpWithArg(&Matrix::selectRows, arg1, arg2);
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
}

TEST(Matrix, tableProjection) {
  for (auto numSamples : {10, 100, 1000, 10000, 80000}) {
    for (auto tableSize : {10, 100}) {
      for (auto inputDim : {20, 50}) {
        VLOG(3) << " numSamples=" << numSamples << " tableSize=" << tableSize
                << " inputDim=" << inputDim;
        testMatrixSelectRows(numSamples, tableSize, inputDim);
      }
    }
  }
}

void testMatrixCopyByRowIndex(int outHeight, int inHeight, int width) {
  AutoCompare test(outHeight, width);
  CpuMatrix arg1(inHeight, width);
  CpuIVector arg2(outHeight);
  arg1.randomizeUniform();
  arg2.rand(inHeight);
170
  test.cmpWithArg(&Matrix::copyByRowIndex, arg1, arg2);
171
}
172

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
TEST(Matrix, copyByRowIndex) {
  for (auto outHeight : {31, 500, 1000}) {
    for (auto inHeight : {17, 257, 500, 1200}) {
      for (auto width : {512, 1024}) {
        VLOG(3) << outHeight << " " << inHeight << " " << width;
        testMatrixCopyByRowIndex(outHeight, inHeight, width);
      }
    }
  }
}

void testCosSim(int heightX, int heightY, int width, real scale) {
  AutoCompare test(heightX, 1);
  CpuMatrix arg1(heightX, width);
  CpuMatrix arg2(heightY, width);
  arg1.randomizeUniform();
  arg2.randomizeUniform();
  arg2.add(-0.5);
191
  test.cmpWithArg(&Matrix::cosSim, arg1, arg2, scale);
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
}

TEST(Matrix, cosSim) {
  for (auto heightX : {10, 100, 1000}) {
    for (auto heightY : {1, heightX}) {
      for (auto width : {10, 100, 1000}) {
        for (auto scale : {1.0, 2.0}) {
          testCosSim(heightX, heightY, width, scale);
        }
      }
    }
  }
}

void testParamReluForward(int height, int width, int w_height, int w_width) {
  AutoCompare test(height, width);
  CpuMatrix arg1(height, width);
  CpuMatrix arg2(w_height, w_width);
  arg1.randomizeUniform();
  arg2.randomizeUniform();
  arg1.add(-0.5);
213
  test.cmpWithArg(&Matrix::paramReluForward, arg1, arg2);
214 215 216 217 218 219 220 221 222
}

void testParamReluBackwardW(int height, int width, int w_height, int w_width) {
  AutoCompare test(w_height, w_width);
  CpuMatrix arg1(height, width);
  CpuMatrix arg2(height, width);
  arg1.randomizeUniform();
  arg2.randomizeUniform();
  arg2.add(-0.5);
223
  test.cmpWithArg(&Matrix::paramReluBackwardW, arg1, arg2);
224 225 226
}

TEST(Matrix, paramRelu) {
H
hedaoyuan 已提交
227 228
  for (auto height : {10, 40, 100}) {
    for (auto width : {10, 40, 100}) {
229 230
      for (auto w_height : {1, 2}) {
        for (auto w_width : {1, 2}) {
H
hedaoyuan 已提交
231
          if (width % (w_height * w_width)) continue;
232 233 234 235 236 237 238 239 240 241 242 243
          testParamReluForward(height, width, w_height, w_width);
          testParamReluBackwardW(height, width, w_height, w_width);
        }
      }
    }
  }
}

void testAddSharedBias(int numSamples, int dim, int channel) {
  AutoCompare test(numSamples, dim);
  CpuMatrix arg1(1, channel);
  arg1.randomizeUniform();
244
  test.cmpWithArg(&Matrix::addSharedBias, arg1, 1.0);
245 246 247 248 249 250
}

void testCollectSharedBias(int numSamples, int dim, int channel) {
  AutoCompare test(1, channel);
  CpuMatrix arg1(numSamples, dim);
  arg1.randomizeUniform();
251
  test.cmpWithArg(&Matrix::collectSharedBias, arg1, 1.0);
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
}

TEST(Matrix, sharedBias) {
  for (auto numSamples : {1, 100, 520}) {
    for (auto dim : {100 * 16, 100 * 32}) {
      for (auto channel : {8, 16}) {
        VLOG(3) << " numSamples=" << numSamples << " dim=" << dim
                << " channel=" << channel;
        testAddSharedBias(numSamples, dim, channel);
        testCollectSharedBias(numSamples, dim, channel);
      }
    }
  }
}

void testMultiBinaryLabelCrossEntropy(int numSamples, int dim) {
  AutoCompare forward(numSamples, 1);
  CpuMatrix arg1(numSamples, dim);
270 271
  CpuSparseMatrix arg2(
      numSamples, dim, numSamples, paddle::NO_VALUE, paddle::SPARSE_CSR);
272 273 274 275 276 277 278 279

  CpuMatrix output1(numSamples, dim);
  output1.randomizeUniform();
  output1.softmax(arg1);
  for (int i = 0; i < numSamples; i++) {
    const unsigned int id = std::rand() % dim;
    arg2.setRow(i, 1, &id, nullptr);
  }
280
  forward.cmpWithArg(&Matrix::multiBinaryLabelCrossEntropy, arg1, arg2);
281 282

  AutoCompare backward(numSamples, dim);
283
  backward.cmpWithArg(&Matrix::multiBinaryLabelCrossEntropyBp, arg1, arg2);
284
}
285

286 287 288 289 290 291 292
TEST(Matrix, multiBinaryCrossEntropy) {
  for (auto numSamples : {100, 1000, 10000}) {
    for (auto dim : {100, 1000, 10000}) {
      VLOG(3) << " numSamples=" << numSamples << " dim=" << dim;
      testMultiBinaryLabelCrossEntropy(numSamples, dim);
    }
  }
293 294 295
}

#endif