cross_entropy_op.h 3.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
D
dongzhihong 已提交
16
#include "paddle/framework/op_registry.h"
17
#include "paddle/platform/hostdevice.h"
Q
Qiao Longfei 已提交
18 19 20 21

namespace paddle {
namespace operators {

D
dongzhihong 已提交
22 23
using Tensor = framework::Tensor;

24
template <typename T>
25 26
HOSTDEVICE T tolerable_value(const T x) {
  PADDLE_ASSERT(std::is_floating_point<T>::value);
27 28 29 30 31 32 33 34 35
  const T kApproInf = 1e20;
  if (x == INFINITY) {
    return kApproInf;
  }
  if (x == -INFINITY) {
    return -kApproInf;
  }
  return x;
}
Y
Yan Chunwei 已提交
36

37
template <typename T>
38
class CrossEntropyOpKernel : public framework::OpKernel {
39
 public:
D
dongzhihong 已提交
40
  void Compute(const framework::ExecutionContext& ctx) const override {
41 42 43
    PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

44 45 46 47 48 49 50 51 52 53
    auto x = ctx.Input<Tensor>("X");
    auto y = ctx.Output<Tensor>("Y");

    auto* x_data = x->data<T>();
    y->mutable_data<T>(ctx.GetPlace());
    auto* y_data = y->data<T>();

    int batch_size = x->dims()[0];
    int class_num = x->dims()[1];

54
    if (ctx.Attr<bool>("soft_label")) {
55 56 57 58 59
      auto* label_data = ctx.Input<Tensor>("Label")->data<T>();
      int index = 0;
      for (int i = 0; i < batch_size; ++i) {
        T sum = static_cast<T>(0);
        for (int j = 0; j < class_num; ++j) {
60 61
          sum += label_data[index] * tolerable_value(std::log(x_data[index]));
          y_data[i] = -sum;
62 63 64 65 66 67 68 69 70
          index++;
        }
      }
    } else {
      auto* label_data = ctx.Input<Tensor>("Label")->data<int>();
      for (int i = 0; i < batch_size; ++i) {
        int index = i * class_num + label_data[i];
        y_data[i] = -tolerable_value(std::log(x_data[index]));
      }
Y
Yan Chunwei 已提交
71 72 73 74
    }
  }
};

75
template <typename T>
76
class CrossEntropyGradientOpKernel : public framework::OpKernel {
Y
Yan Chunwei 已提交
77
 public:
D
dongzhihong 已提交
78
  void Compute(const framework::ExecutionContext& ctx) const override {
79 80 81
    PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

82 83 84 85
    auto x = ctx.Input<Tensor>("X");
    auto dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto label = ctx.Input<Tensor>("Label");
Y
Yan Chunwei 已提交
86

87 88 89
    auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
    auto* dy_data = dy->data<T>();
    auto* x_data = x->data<T>();
Y
Yan Chunwei 已提交
90

91 92
    int batch_size = x->dims()[0];
    int class_num = x->dims()[1];
Y
Yan Chunwei 已提交
93

94
    // TODO(qingqing): make zero setting an common function.
95
    if (ctx.Attr<bool>("soft_label")) {
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
      auto* label_data = ctx.Input<Tensor>("Label")->data<T>();
      int index = 0;
      for (int i = 0; i < batch_size; ++i) {
        for (int j = 0; j < class_num; ++j) {
          dx_data[index] = -label_data[index] * dy_data[i] / x_data[index];
          index++;
        }
      }
    } else {
      auto* label_data = label->data<int>();
      memset(dx_data, 0, sizeof(T) * batch_size * class_num);
      for (int i = 0; i < batch_size; ++i) {
        PADDLE_ASSERT(label_data[i] >= 0 || label_data[i] < class_num);
        int index = i * class_num + label_data[i];
        dx_data[index] = -dy_data[i] / x_data[index];
      }
Q
Qiao Longfei 已提交
112 113 114 115 116 117
    }
  }
};

}  // namespace operators
}  // namespace paddle