cos_sim_op.cc 6.9 KB
Newer Older
X
Xinghai Sun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/cos_sim_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class CosSimOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
28
    // notnull check
29 30 31 32 33 34 35 36 37 38
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
                            "Input(X) of CosSimOp should not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
                            "Input(Y) of CosSimOp should not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
                            "Output(Out) of CosSimOp should not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("XNorm"),
                            "Output(XNorm) of CosSimOp should not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("YNorm"),
                            "Output(YNorm) of CosSimOp should not be null.");
39 40 41 42

    // shape check
    auto x_dims = ctx.Input<Tensor>("X")->dims();
    auto y_dims = ctx.Input<Tensor>("Y")->dims();
43 44

    PADDLE_ENFORCE_EQ(x_dims.size(), y_dims.size(),
45
                      "Ranks of Input(X) and Input(Y) must be equal.");
46
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
47
                      "Rank of Input(X) must not be less than 2.");
48 49 50 51
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 1, x_dims.size()),
                      framework::slice_ddim(y_dims, 1, y_dims.size()),
                      "All dimensions except the 1st of Input(X) and Input(Y) "
                      "must be equal.");
52
    PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1,
53 54
                   "The 1st dimension of Input(Y) must be equal to Input(X) or"
                   " just 1 (which will be broadcasted to match Input(X)).");
55 56

    // resize tensor
57 58 59 60
    ctx.Output<framework::Tensor>("Out")->Resize({x_dims[0], 1});
    ctx.Output<framework::Tensor>("XNorm")->Resize({x_dims[0], 1});
    ctx.Output<framework::Tensor>("YNorm")->Resize({y_dims[0], 1});
    ctx.ShareLoD("X", /*->*/ "Out");
X
Xinghai Sun 已提交
61 62 63 64 65 66 67
  }
};

class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  CosSimOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
68 69
    AddInput("X", "The 1st input of cos_sim op.");
    AddInput("Y", "The 2nd input of cos_sim op.");
X
Xinghai Sun 已提交
70
    AddOutput("Out", "The output of cos_sim op.");
71 72 73 74 75 76 77 78
    AddOutput("XNorm",
              "Norm of the first input, reduced along the 1st "
              "dimension.")
        .AsIntermediate();
    AddOutput("YNorm",
              "Norm of the second input, reduced along the 1st "
              "dimension.")
        .AsIntermediate();
79

X
Xinghai Sun 已提交
80 81 82
    AddComment(R"DOC(
Cosine Similarity Operator.

83 84
The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y)).

85 86 87
The input `X` and `Y` must have the same shape, except that the 1st dimension
of input `Y` could be just 1 (different from input `X`), which will be
broadcasted to match the shape of input `X` before computing their cosine
88
similarity.
89 90 91

Both the input `X` and `Y` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
X
Xinghai Sun 已提交
92 93 94 95 96 97 98 99 100 101
)DOC");
  }
};

class CosSimOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
102
    // notnull check
103 104 105 106 107 108
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("XNorm"),
                            "Input(XNorm) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("YNorm"),
                            "Input(YNorm) must not be null.");
109 110
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Out"),
                            "Input(Out) must not be null.");
X
Xinghai Sun 已提交
111
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
112
                            "Input(Out@GRAD) must not be null.");
X
Xinghai Sun 已提交
113

114
    // shape check
X
Xinghai Sun 已提交
115 116
    auto x_dims = ctx.Input<Tensor>("X")->dims();
    auto y_dims = ctx.Input<Tensor>("Y")->dims();
117 118
    auto xnorm_dims = ctx.Input<Tensor>("XNorm")->dims();
    auto ynorm_dims = ctx.Input<Tensor>("YNorm")->dims();
119 120 121
    auto out_dims = ctx.Input<Tensor>("Out")->dims();
    auto out_grad_dims =
        ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
122 123 124 125 126 127 128 129 130 131 132 133

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
                      "Ranks of Input(X) and Input(Y) must be equal.");
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      "Rank of Input(X) must not be less than 2.");
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 1, x_dims.size()),
                      framework::slice_ddim(y_dims, 1, y_dims.size()),
                      "All dimensions except the 1st of Input(X) and Input(Y) "
                      "must be equal.");
    PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1,
                   "The 1st dimension of Input(Y) must be equal to Input(X) or"
                   " just 1 (which will be broadcasted to match Input(X)).");
134 135 136 137
    auto target_xnorm_dims = framework::make_ddim({x_dims[0], 1});
    auto target_ynorm_dims = framework::make_ddim({y_dims[0], 1});
    PADDLE_ENFORCE_EQ(xnorm_dims, target_xnorm_dims,
                      "Shape of Input(XNorm) must be [X.Dim(0), 1].");
138 139 140 141 142
    PADDLE_ENFORCE_EQ(ynorm_dims, target_ynorm_dims,
                      "Shape of Input(YNorm) must be [Y.Dim(0), 1].");
    PADDLE_ENFORCE_EQ(out_dims, target_xnorm_dims,
                      "Shape of Input(Out) must be [X.Dim(0), 1].");
    PADDLE_ENFORCE_EQ(out_grad_dims, target_xnorm_dims,
143 144 145
                      "Shape of Input(Out@Grad) must be [X.Dim(0), 1].");

    // resize tensor
146 147
    auto *x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto *y_grad = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
148 149
    if (x_grad) x_grad->Resize(x_dims);
    if (y_grad) y_grad->Resize(y_dims);
X
Xinghai Sun 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(cos_sim, ops::CosSimOp, ops::CosSimOpMaker, cos_sim_grad,
            ops::CosSimOpGrad);
REGISTER_OP_CPU_KERNEL(cos_sim,
                       ops::CosSimKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    cos_sim_grad, ops::CosSimGradKernel<paddle::platform::CPUPlace, float>);