set_value_op_mlu.cc 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <numeric>
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#include "paddle/fluid/operators/set_value_op.h"

namespace paddle {
namespace operators {

using MLUDeviceContext = platform::MLUDeviceContext;

template <typename T>
class SetValueMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* in = ctx.Input<Tensor>("Input");
    auto* value_tensor = ctx.Input<Tensor>("ValueTensor");
    auto* out = ctx.Output<Tensor>("Out");
    out->mutable_data<T>(ctx.GetPlace());

    auto starts_tensor_list = ctx.MultiInput<Tensor>("StartsTensorList");
    auto ends_tensor_list = ctx.MultiInput<Tensor>("EndsTensorList");
    auto steps_tensor_list = ctx.MultiInput<Tensor>("StepsTensorList");

    auto axes = ctx.Attr<std::vector<int64_t>>("axes");
    auto starts = ctx.Attr<std::vector<int64_t>>("starts");
    auto ends = ctx.Attr<std::vector<int64_t>>("ends");
    auto steps = ctx.Attr<std::vector<int64_t>>("steps");
    auto shape = ctx.Attr<std::vector<int64_t>>("shape");
    auto decrease_axes = ctx.Attr<std::vector<int64_t>>("decrease_axes");
    auto none_axes = ctx.Attr<std::vector<int64_t>>("none_axes");

    if (!starts_tensor_list.empty()) {
      starts = GetDataFromTensorList<int64_t>(starts_tensor_list);
    }
    if (!ends_tensor_list.empty()) {
      ends = GetDataFromTensorList<int64_t>(ends_tensor_list);
    }
    if (!steps_tensor_list.empty()) {
      steps = GetDataFromTensorList<int64_t>(steps_tensor_list);
    }

    auto in_dims = in->dims();
    phi::funcs::CheckAndUpdateSliceAttrs(in_dims, axes, &starts, &ends, &steps);
    auto slice_dims =
        phi::funcs::GetSliceDims(in_dims, axes, starts, ends, &steps);
    auto decrease_slice_dims =
        phi::funcs::GetDecreasedDims(slice_dims, decrease_axes);

    auto slice_dims_for_assign = decrease_slice_dims;
    if (!none_axes.empty()) {
      std::vector<int64_t> slice_dims_with_none;
      size_t none_axes_cur = 0, decrease_axes_cur = 0;
      for (int i = 0; i < slice_dims.size(); ++i) {
        while (none_axes_cur < none_axes.size() &&
               none_axes[none_axes_cur] <= i) {
          slice_dims_with_none.push_back(1);
          none_axes_cur++;
        }
        if (decrease_axes_cur < decrease_axes.size() &&
            decrease_axes[decrease_axes_cur] == i) {
          decrease_axes_cur++;
        } else {
          slice_dims_with_none.push_back(slice_dims[i]);
        }
      }
      while (none_axes_cur < none_axes.size()) {
        slice_dims_with_none.push_back(1);
        none_axes_cur++;
      }

      slice_dims_for_assign = phi::make_ddim(slice_dims_with_none);
    }
87 88 89 90
    int in_size = in_dims.size();
    int starts_indices[in_size] = {0};
    int ends_indices[in_size] = {0};
    int strides_indices[in_size] = {0};
91 92 93

    for (int i = 0; i < in_dims.size(); ++i) {
      starts_indices[i] = 0;
94
      ends_indices[i] = static_cast<int>(slice_dims[i]);
95 96 97 98
      strides_indices[i] = 1;
    }
    for (size_t i = 0; i < axes.size(); i++) {
      int axis_index = axes[i];
99 100 101
      starts_indices[axis_index] = static_cast<int>(starts[i]);
      ends_indices[axis_index] = static_cast<int>(ends[i]);
      strides_indices[axis_index] = static_cast<int>(steps[i]);
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    }
    Tensor value_t(in->type());
    if (value_tensor != nullptr) {
      value_t.ShareDataWith(*value_tensor);
    } else {
      auto value_dims = phi::make_ddim(shape);
      CheckIsDimsMatch(slice_dims_for_assign, value_dims);

      value_t.mutable_data<T>(value_dims, ctx.GetPlace());
      auto value_name =
          GetValueName(framework::TransToProtoVarType(in->dtype()));
      CopyVectorToTensor<T>(value_name.c_str(), &value_t, ctx);
      value_t.Resize(value_dims);
    }

    Tensor value_temp(in->type());
    if (slice_dims_for_assign == value_t.dims()) {
      value_temp.ShareDataWith(value_t);
    } else {
      value_temp.Resize(slice_dims_for_assign);
      value_temp.mutable_data<T>(ctx.GetPlace());
      MLUCnnlTensorDesc value_t_desc(value_t);
      MLUCnnlTensorDesc value_temp_desc(value_temp);
      MLUCnnl::BroadcastTo(ctx,
                           value_t_desc.get(),
                           GetBasePtr(&value_t),
                           value_temp_desc.get(),
                           GetBasePtr(&value_temp));
    }

    int64_t input_numel = phi::product(in_dims);
    int64_t value_numel = phi::product(value_temp.dims());
134 135 136 137
    Tensor in_temp, out_temp, val_temp, index_out;
    int64_t stride_step = phi::product(in_dims);
    std::vector<int64_t> index_indices(stride_step);
    std::iota(index_indices.begin(), index_indices.end(), 0);
138 139 140 141 142
    framework::Tensor index_temp;
    in_temp.ShareDataWith(*in);
    val_temp.ShareDataWith(value_temp);
    paddle::framework::TensorFromVector(
        index_indices, ctx.device_context(), &index_temp);
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    index_temp.Resize(in_dims);
    auto index_dims = in_dims;
    for (int i = 0; i < in_dims.size(); ++i) {
      if (starts_indices[i] < 0 || ends_indices[i] < 0) {
        starts_indices[i] -= in_dims[i];
        ends_indices[i] -= in_dims[i];
      }
      if (strides_indices[i] > 0)
        index_dims[i] =
            static_cast<int>((ends_indices[i] - starts_indices[i] - 1) /
                             strides_indices[i]) +
            1;
      else
        index_dims[i] =
            static_cast<int>((ends_indices[i] - starts_indices[i] + 1) /
                             strides_indices[i]) +
            1;
    }
161 162 163 164
    auto new_in_dims = phi::make_ddim({input_numel});
    auto new_val_dims = phi::make_ddim({value_numel});
    in_temp.Resize(new_in_dims);
    val_temp.Resize(new_val_dims);
165 166
    index_out.Resize(index_dims);
    index_out.mutable_data<int64_t>(ctx.GetPlace());
167 168 169
    cnnlScatterRefMode_t mode = CNNL_SCATTERREF_UPDATE;
    MLUCnnlTensorDesc x_desc(in_temp);
    MLUCnnlTensorDesc indices_desc(index_temp);
170
    MLUCnnlTensorDesc indices_out_desc(index_out);
171 172
    MLUCnnlTensorDesc updates_desc(val_temp);
    MLUCnnlTensorDesc out_desc(*out);
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    MLUCnnl::StridedSlice(ctx,
                          starts_indices,
                          ends_indices,
                          strides_indices,
                          indices_desc.get(),
                          GetBasePtr(&index_temp),
                          indices_out_desc.get(),
                          GetBasePtr(&index_out));
    PADDLE_ENFORCE_EQ(
        static_cast<int64_t>(phi::product(index_out.dims())),
        phi::product(slice_dims_for_assign),
        platform::errors::InvalidArgument(
            "OP(set_value) error index indices and value update not match "));
    Tensor index_final;
    index_final.ShareDataWith(index_out);
    int64_t indices_numel = phi::product(index_dims);
    auto new_index_dims = phi::make_ddim({indices_numel});
    index_final.Resize(new_index_dims);
    MLUCnnlTensorDesc indices_final_desc(index_final);
192 193 194 195 196
    MLUCnnl::ScatterRefFunctor(ctx,
                               x_desc.get(),
                               GetBasePtr(&in_temp),
                               updates_desc.get(),
                               GetBasePtr(&val_temp),
197 198
                               indices_final_desc.get(),
                               GetBasePtr(&index_final),
199 200 201 202 203 204 205 206 207 208 209 210 211 212
                               mode);
    in_temp.Resize(in_dims);
    paddle::framework::TensorCopy(in_temp, ctx.GetPlace(), out);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_MLU_KERNEL(set_value,
                       ops::SetValueMLUKernel<int>,
                       ops::SetValueMLUKernel<float>);