spectral_helper.h 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/operators/spectral_op.h"

#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/dynload/hipfft.h"
#endif

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/dynload/cufft.h"
#endif

namespace paddle {
namespace operators {
using ScalarType = framework::proto::VarType::Type;
const int64_t kMaxCUFFTNdim = 3;
const int64_t kMaxDataNdim = kMaxCUFFTNdim + 1;
// This struct is used to easily compute hashes of the
// parameters. It will be the **key** to the plan cache.
struct PlanKey {
  // between 1 and kMaxCUFFTNdim, i.e., 1 <= signal_ndim <= 3
  int64_t signal_ndim_;
  // These include additional batch dimension as well.
  int64_t sizes_[kMaxDataNdim];
  int64_t input_shape_[kMaxDataNdim];
  int64_t output_shape_[kMaxDataNdim];
  FFTTransformType fft_type_;
  ScalarType value_type_;

  PlanKey() = default;

  PlanKey(const std::vector<int64_t>& in_shape,
          const std::vector<int64_t>& out_shape,
          const std::vector<int64_t>& signal_size, FFTTransformType fft_type,
          ScalarType value_type) {
    // Padding bits must be zeroed for hashing
    memset(this, 0, sizeof(*this));
    signal_ndim_ = signal_size.size() - 1;
    fft_type_ = fft_type;
    value_type_ = value_type;

    std::copy(signal_size.cbegin(), signal_size.cend(), sizes_);
    std::copy(in_shape.cbegin(), in_shape.cend(), input_shape_);
    std::copy(out_shape.cbegin(), out_shape.cend(), output_shape_);
  }
};

#if defined(PADDLE_WITH_CUDA)
// An RAII encapsulation of cuFFTHandle
class CuFFTHandle {
  ::cufftHandle handle_;

 public:
  CuFFTHandle() {
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftCreate(&handle_));
  }

  ::cufftHandle& get() { return handle_; }
  const ::cufftHandle& get() const { return handle_; }

  ~CuFFTHandle() {
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftDestroy(handle_));
  }
};

using plan_size_type = long long int;  // NOLINT
// This class contains all the information needed to execute a cuFFT plan:
//   1. the plan
//   2. the workspace size needed
class CuFFTConfig {
 public:
  // Only move semantics is enought for this class. Although we already use
  // unique_ptr for the plan, still remove copy constructor and assignment op so
  // we don't accidentally copy and take perf hit.
  explicit CuFFTConfig(const PlanKey& plan_key)
      : CuFFTConfig(
            std::vector<int64_t>(plan_key.sizes_,
                                 plan_key.sizes_ + plan_key.signal_ndim_ + 1),
            plan_key.signal_ndim_, plan_key.fft_type_, plan_key.value_type_) {}

  // sizes are full signal, including batch size and always two-sided
  CuFFTConfig(const std::vector<int64_t>& sizes, const int64_t signal_ndim,
              FFTTransformType fft_type, ScalarType dtype)
      : fft_type_(fft_type), value_type_(dtype) {
    // signal sizes (excluding batch dim)
    std::vector<plan_size_type> signal_sizes(sizes.begin() + 1, sizes.end());

    // input batch size
    const auto batch = static_cast<plan_size_type>(sizes[0]);
    // const int64_t signal_ndim = sizes.size() - 1;
    PADDLE_ENFORCE_EQ(signal_ndim, sizes.size() - 1,
                      platform::errors::InvalidArgument(
                          "The signal_ndim must be equal to sizes.size() - 1,"
                          "But signal_ndim is: [%d], sizes.size() - 1 is: [%d]",
                          signal_ndim, sizes.size() - 1));

    cudaDataType itype, otype, exec_type;
    const auto complex_input = has_complex_input(fft_type);
    const auto complex_output = has_complex_output(fft_type);
    if (dtype == framework::proto::VarType::FP32) {
      itype = complex_input ? CUDA_C_32F : CUDA_R_32F;
      otype = complex_output ? CUDA_C_32F : CUDA_R_32F;
      exec_type = CUDA_C_32F;
    } else if (dtype == framework::proto::VarType::FP64) {
      itype = complex_input ? CUDA_C_64F : CUDA_R_64F;
      otype = complex_output ? CUDA_C_64F : CUDA_R_64F;
      exec_type = CUDA_C_64F;
    } else if (dtype == framework::proto::VarType::FP16) {
      itype = complex_input ? CUDA_C_16F : CUDA_R_16F;
      otype = complex_output ? CUDA_C_16F : CUDA_R_16F;
      exec_type = CUDA_C_16F;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "cuFFT only support transforms of type float16, float32 and "
          "float64"));
    }

    // disable auto allocation of workspace to use allocator from the framework
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftSetAutoAllocation(
        plan(), /* autoAllocate */ 0));

    size_t ws_size_t;

    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftXtMakePlanMany(
        plan(), signal_ndim, signal_sizes.data(),
        /* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1, itype,
        /* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, otype,
        batch, &ws_size_t, exec_type));

    ws_size = ws_size_t;
  }

  const cufftHandle& plan() const { return plan_ptr.get(); }

  FFTTransformType transform_type() const { return fft_type_; }
  ScalarType data_type() const { return value_type_; }
  size_t workspace_size() const { return ws_size; }

 private:
  CuFFTHandle plan_ptr;
  size_t ws_size;
  FFTTransformType fft_type_;
  ScalarType value_type_;
};

#elif defined(PADDLE_WITH_HIP)
// An RAII encapsulation of cuFFTHandle
class HIPFFTHandle {
  ::hipfftHandle handle_;

 public:
  HIPFFTHandle() {
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftCreate(&handle_));
  }

  ::hipfftHandle& get() { return handle_; }
  const ::hipfftHandle& get() const { return handle_; }

  ~HIPFFTHandle() {
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftDestroy(handle_));
  }
};
using plan_size_type = int;
// This class contains all the information needed to execute a cuFFT plan:
//   1. the plan
//   2. the workspace size needed
class HIPFFTConfig {
 public:
  // Only move semantics is enought for this class. Although we already use
  // unique_ptr for the plan, still remove copy constructor and assignment op so
  // we don't accidentally copy and take perf hit.
  explicit HIPFFTConfig(const PlanKey& plan_key)
      : HIPFFTConfig(
            std::vector<int64_t>(plan_key.sizes_,
                                 plan_key.sizes_ + plan_key.signal_ndim_ + 1),
            plan_key.signal_ndim_, plan_key.fft_type_, plan_key.value_type_) {}

  // sizes are full signal, including batch size and always two-sided
  HIPFFTConfig(const std::vector<int64_t>& sizes, const int64_t signal_ndim,
               FFTTransformType fft_type, ScalarType dtype)
      : fft_type_(fft_type), value_type_(dtype) {
    // signal sizes (excluding batch dim)
    std::vector<plan_size_type> signal_sizes(sizes.begin() + 1, sizes.end());

    // input batch size
    const auto batch = static_cast<plan_size_type>(sizes[0]);
    // const int64_t signal_ndim = sizes.size() - 1;
    PADDLE_ENFORCE_EQ(signal_ndim, sizes.size() - 1,
                      platform::errors::InvalidArgument(
                          "The signal_ndim must be equal to sizes.size() - 1,"
                          "But signal_ndim is: [%d], sizes.size() - 1 is: [%d]",
                          signal_ndim, sizes.size() - 1));

    hipfftType exec_type = [&] {
      if (dtype == framework::proto::VarType::FP32) {
        switch (fft_type) {
          case FFTTransformType::C2C:
            return HIPFFT_C2C;
          case FFTTransformType::R2C:
            return HIPFFT_R2C;
          case FFTTransformType::C2R:
            return HIPFFT_C2R;
        }
      } else if (dtype == framework::proto::VarType::FP64) {
        switch (fft_type) {
          case FFTTransformType::C2C:
            return HIPFFT_Z2Z;
          case FFTTransformType::R2C:
            return HIPFFT_D2Z;
          case FFTTransformType::C2R:
            return HIPFFT_Z2D;
        }
      }
      PADDLE_THROW(platform::errors::InvalidArgument(
          "hipFFT only support transforms of type float32 and float64"));
    }();

    // disable auto allocation of workspace to use allocator from the framework
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftSetAutoAllocation(
        plan(), /* autoAllocate */ 0));

    size_t ws_size_t;

    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftMakePlanMany(
        plan(), signal_ndim, signal_sizes.data(),
        /* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1,
        /* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, exec_type,
        batch, &ws_size_t));

    ws_size = ws_size_t;
  }

  const hipfftHandle& plan() const { return plan_ptr.get(); }

  FFTTransformType transform_type() const { return fft_type_; }
  ScalarType data_type() const { return value_type_; }
  size_t workspace_size() const { return ws_size; }

 private:
  HIPFFTHandle plan_ptr;
  size_t ws_size;
  FFTTransformType fft_type_;
  ScalarType value_type_;
};
#endif
}  // namespace operators
}  // namespace paddle