collect_fpn_proposals_op.cu 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
  Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
      http://www.apache.org/licenses/LICENSE-2.0
  Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#ifdef __NVCC__
13
#include "cub/cub.cuh"
14 15 16
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
17
namespace cub = hipcub;
18 19 20
#endif

#include <paddle/fluid/memory/allocation/allocator.h>
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/detection/bbox_util.h"
#include "paddle/fluid/operators/detection/collect_fpn_proposals_op.h"
#include "paddle/fluid/operators/gather.cu.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

static constexpr int kNumCUDAThreads = 64;
static constexpr int kNumMaxinumNumBlocks = 4096;

const int kBBoxSize = 4;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

static __global__ void GetLengthLoD(const int nthreads, const int* batch_ids,
                                    int* length_lod) {
50
  CUDA_KERNEL_LOOP(i, nthreads) {
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    platform::CudaAtomicAdd(length_lod + batch_ids[i], 1);
  }
}

template <typename DeviceContext, typename T>
class GPUCollectFpnProposalsOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto roi_ins = ctx.MultiInput<LoDTensor>("MultiLevelRois");
    const auto score_ins = ctx.MultiInput<LoDTensor>("MultiLevelScores");
    auto fpn_rois = ctx.Output<LoDTensor>("FpnRois");
    auto& dev_ctx = ctx.template device_context<DeviceContext>();

    const int post_nms_topN = ctx.Attr<int>("post_nms_topN");

    // concat inputs along axis = 0
    int roi_offset = 0;
    int score_offset = 0;
    int total_roi_num = 0;
    for (size_t i = 0; i < roi_ins.size(); ++i) {
      total_roi_num += roi_ins[i]->dims()[0];
    }

    int real_post_num = min(post_nms_topN, total_roi_num);
    fpn_rois->mutable_data<T>({real_post_num, kBBoxSize}, dev_ctx.GetPlace());
    Tensor concat_rois;
    Tensor concat_scores;
    T* concat_rois_data = concat_rois.mutable_data<T>(
        {total_roi_num, kBBoxSize}, dev_ctx.GetPlace());
    T* concat_scores_data =
        concat_scores.mutable_data<T>({total_roi_num, 1}, dev_ctx.GetPlace());
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({total_roi_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(platform::CPUPlace());
    int index = 0;
    int lod_size;
88
    auto place = BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace());
89

90
    auto multi_rois_num = ctx.MultiInput<Tensor>("MultiLevelRoIsNum");
91 92 93
    for (size_t i = 0; i < roi_ins.size(); ++i) {
      auto roi_in = roi_ins[i];
      auto score_in = score_ins[i];
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
      if (multi_rois_num.size() > 0) {
        framework::Tensor temp;
        TensorCopySync(*multi_rois_num[i], platform::CPUPlace(), &temp);
        const int* length_in = temp.data<int>();
        lod_size = multi_rois_num[i]->numel();
        for (size_t n = 0; n < lod_size; ++n) {
          for (size_t j = 0; j < length_in[n]; ++j) {
            roi_batch_id_data[index++] = n;
          }
        }
      } else {
        auto length_in = roi_in->lod().back();
        lod_size = length_in.size() - 1;
        for (size_t n = 0; n < lod_size; ++n) {
          for (size_t j = length_in[n]; j < length_in[n + 1]; ++j) {
            roi_batch_id_data[index++] = n;
          }
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        }
      }

      memory::Copy(place, concat_rois_data + roi_offset, place,
                   roi_in->data<T>(), roi_in->numel() * sizeof(T),
                   dev_ctx.stream());
      memory::Copy(place, concat_scores_data + score_offset, place,
                   score_in->data<T>(), score_in->numel() * sizeof(T),
                   dev_ctx.stream());
      roi_offset += roi_in->numel();
      score_offset += score_in->numel();
    }

    // copy batch id list to GPU
    Tensor roi_batch_id_list_gpu;
    framework::TensorCopy(roi_batch_id_list, dev_ctx.GetPlace(),
                          &roi_batch_id_list_gpu);

    Tensor index_in_t;
    int* idx_in =
        index_in_t.mutable_data<int>({total_roi_num}, dev_ctx.GetPlace());
    platform::ForRange<platform::CUDADeviceContext> for_range_total(
        dev_ctx, total_roi_num);
    for_range_total(RangeInitFunctor{0, 1, idx_in});

    Tensor keys_out_t;
    T* keys_out =
        keys_out_t.mutable_data<T>({total_roi_num}, dev_ctx.GetPlace());
    Tensor index_out_t;
    int* idx_out =
        index_out_t.mutable_data<int>({total_roi_num}, dev_ctx.GetPlace());

    // Determine temporary device storage requirements
    size_t temp_storage_bytes = 0;
    cub::DeviceRadixSort::SortPairsDescending<T, int>(
        nullptr, temp_storage_bytes, concat_scores.data<T>(), keys_out, idx_in,
        idx_out, total_roi_num);
    // Allocate temporary storage
149
    auto d_temp_storage = memory::Alloc(place, temp_storage_bytes);
150

151 152
    // Run sorting operation
    // sort score to get corresponding index
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    cub::DeviceRadixSort::SortPairsDescending<T, int>(
        d_temp_storage->ptr(), temp_storage_bytes, concat_scores.data<T>(),
        keys_out, idx_in, idx_out, total_roi_num);
    index_out_t.Resize({real_post_num});
    Tensor sorted_rois;
    sorted_rois.mutable_data<T>({real_post_num, kBBoxSize}, dev_ctx.GetPlace());
    Tensor sorted_batch_id;
    sorted_batch_id.mutable_data<int>({real_post_num}, dev_ctx.GetPlace());
    GPUGather<T>(dev_ctx, concat_rois, index_out_t, &sorted_rois);
    GPUGather<int>(dev_ctx, roi_batch_id_list_gpu, index_out_t,
                   &sorted_batch_id);

    Tensor batch_index_t;
    int* batch_idx_in =
        batch_index_t.mutable_data<int>({real_post_num}, dev_ctx.GetPlace());
    platform::ForRange<platform::CUDADeviceContext> for_range_post(
        dev_ctx, real_post_num);
    for_range_post(RangeInitFunctor{0, 1, batch_idx_in});

    Tensor out_id_t;
    int* out_id_data =
        out_id_t.mutable_data<int>({real_post_num}, dev_ctx.GetPlace());
    // Determine temporary device storage requirements
    temp_storage_bytes = 0;
    cub::DeviceRadixSort::SortPairs<int, int>(
        nullptr, temp_storage_bytes, sorted_batch_id.data<int>(), out_id_data,
        batch_idx_in, index_out_t.data<int>(), real_post_num);
    // Allocate temporary storage
181
    d_temp_storage = memory::Alloc(place, temp_storage_bytes);
182

183 184
    // Run sorting operation
    // sort batch_id to get corresponding index
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    cub::DeviceRadixSort::SortPairs<int, int>(
        d_temp_storage->ptr(), temp_storage_bytes, sorted_batch_id.data<int>(),
        out_id_data, batch_idx_in, index_out_t.data<int>(), real_post_num);

    GPUGather<T>(dev_ctx, sorted_rois, index_out_t, fpn_rois);

    Tensor length_lod;
    int* length_lod_data =
        length_lod.mutable_data<int>({lod_size}, dev_ctx.GetPlace());
    math::SetConstant<platform::CUDADeviceContext, int> set_zero;
    set_zero(dev_ctx, &length_lod, static_cast<int>(0));

    int blocks = NumBlocks(real_post_num);
    int threads = kNumCUDAThreads;

    // get length-based lod by batch ids
    GetLengthLoD<<<blocks, threads>>>(real_post_num, out_id_data,
                                      length_lod_data);
    std::vector<int> length_lod_cpu(lod_size);
    memory::Copy(platform::CPUPlace(), length_lod_cpu.data(), place,
                 length_lod_data, sizeof(int) * lod_size, dev_ctx.stream());
    dev_ctx.Wait();

    std::vector<size_t> offset(1, 0);
    for (int i = 0; i < lod_size; ++i) {
      offset.emplace_back(offset.back() + length_lod_cpu[i]);
    }

213 214 215 216 217 218 219
    if (ctx.HasOutput("RoisNum")) {
      auto* rois_num = ctx.Output<Tensor>("RoisNum");
      int* rois_num_data = rois_num->mutable_data<int>({lod_size}, place);
      memory::Copy(place, rois_num_data, place, length_lod_data,
                   lod_size * sizeof(int), dev_ctx.stream());
    }

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    framework::LoD lod;
    lod.emplace_back(offset);
    fpn_rois->set_lod(lod);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    collect_fpn_proposals,
    ops::GPUCollectFpnProposalsOpKernel<paddle::platform::CUDADeviceContext,
                                        float>,
    ops::GPUCollectFpnProposalsOpKernel<paddle::platform::CUDADeviceContext,
                                        double>);