fc_mkldnn_op.cc 27.2 KB
Newer Older
M
mozga-intel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
W
wanghuancoder 已提交
16

17
#include "paddle/fluid/operators/fc_op.h"
M
mozga-intel 已提交
18
#include "paddle/fluid/platform/mkldnn_helper.h"
W
wanghuancoder 已提交
19

20 21 22 23
namespace pten {
class DenseTensor;
}  // namespace pten

W
wanghuancoder 已提交
24
namespace paddle {
25
namespace framework {}  // namespace framework
W
wanghuancoder 已提交
26 27 28 29
namespace platform {
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle
M
mozga-intel 已提交
30 31 32 33

namespace paddle {
namespace operators {

34 35 36 37 38 39 40 41
using framework::DataLayout;
using framework::Tensor;
using framework::LoDTensor;
using framework::DDim;
using framework::ExecutionContext;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;
42 43 44 45 46
using dnnl::memory;
using dnnl::inner_product_forward;
using dnnl::primitive;
using dnnl::stream;
using dnnl::prop_kind;
M
mozga-intel 已提交
47

M
Michał Gallus 已提交
48
template <typename T_in, typename T_w, typename T_out>
49
class FCPrimitiveFactory {
M
mozga-intel 已提交
50
 public:
51
  explicit FCPrimitiveFactory(const dnnl::engine& engine) : engine_(engine) {}
52

A
Adam 已提交
53 54
  void ExecuteFcPrimitive(const LoDTensor* input, const Tensor* weights,
                          const Tensor* bias, LoDTensor* output,
55
                          const MKLDNNDeviceContext& dev_ctx,
A
Adam 已提交
56
                          const ExecutionContext& ctx) {
57
    RecomputeOutputDims(ctx, input, weights, output);
M
Michał Gallus 已提交
58 59
    // If primitive has already been created and cached, don't create new one,
    // but update input and output data pointers and return it.
60 61
    if (fc_) {
      UpdateDataPointers(ctx, output, input);
A
Adam 已提交
62 63
      this->Execute();
      return;
64
    }  // Otherwise, create a new one.
M
mozga-intel 已提交
65

66
    auto in_col_dims = ctx.Attr<int>("in_num_col_dims");
T
tianshuo78520a 已提交
67 68 69 70 71 72
    PADDLE_ENFORCE_LE(
        in_col_dims, 2,
        platform::errors::Unimplemented(
            "DNNL FC doesn't support in_num_col_dims parameter to "
            "be higher than "
            "2."));
73 74 75 76 77 78 79 80 81 82 83 84 85
    if (in_col_dims == 2) {
      PADDLE_ENFORCE_EQ(
          input->dims().size(), 3,
          platform::errors::Unimplemented(
              "DNNL FC only supports in_num_col_dims equal to 2 when "
              "3 dim input is provided."));
      PADDLE_ENFORCE_EQ(
          input->format(), MKLDNNMemoryFormat::ncw,
          platform::errors::Unimplemented(
              "DNNL FC only supports in_num_col_dims equal to 2 when "
              "input format is equal to ncw."));
    }

86 87
    weights_ = CreateWeightsMemory(weights);

88 89 90 91 92
    // Since MKL-DNN has a lot of limitations on what the input/weights/output
    // dimensions should be, to simplify the code, the creation of primitive
    // descriptor has been divided into separate cases, based on the number
    // of input dimensions.
    size_t input_dim_num = input->dims().size();
93
    paddle::optional<dnnl::inner_product_forward::primitive_desc> fc_prim_desc;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    memory::desc usr_weights_desc = {};
    switch (input_dim_num) {
      case 2:
        fc_prim_desc =
            Create2DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create2DUserWeightsDesc();
        break;
      case 3:
        fc_prim_desc =
            Create3DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create3DUserWeightsDesc(weights);
        break;
      case 4:
        fc_prim_desc =
            Create4DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create4DUserWeightsDesc(input, weights);
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "DNNL FC doesn't support input dims different than 2, 3, 4."));
        break;
115
    }
116 117 118 119
    input_ = CreateMemory<T_in>(fc_prim_desc->src_desc(), input);
    // Update weights format inside of its memory
    weights_ = Reorder(usr_weights_desc, usr_weights_desc,
                       weights_->get_data_handle());
120

121 122 123
    // Quantize weights and reorder to format chosen by FC primitive descriptor.
    QuantizeWeights(ctx, fc_prim_desc->weights_desc());

124
    bias_ = CreateMemoryToBeCached<float>(fc_prim_desc->bias_desc(), bias);
125 126
    // If int8 is desired, quantize bias into 32-bit signed int
    QuantizeBias(*fc_prim_desc, ctx);
M
mozga-intel 已提交
127

128 129 130
    // Store weights and bias in the mkldnn cache
    CacheWeightsAndBias(dev_ctx, ctx);

131 132 133 134 135 136
    // Based on format determined by inner_product, create output in desired
    // memory format
    output_ = CreateDstMemory(*fc_prim_desc, ctx, output);

    // Return MKL-DNN primitive ready to be fed into pipeline and executed
    fc_ = inner_product_forward(*fc_prim_desc);
A
Adam 已提交
137 138 139 140
    this->Execute();
  }

  void Execute() {
141
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
142
    if (bias_) {
143 144 145 146
      fc_->execute(astream, {{DNNL_ARG_SRC, *input_},
                             {DNNL_ARG_WEIGHTS, *weights_},
                             {DNNL_ARG_BIAS, *bias_},
                             {DNNL_ARG_DST, *output_}});
A
Adam 已提交
147
    } else {
148 149 150
      fc_->execute(astream, {{DNNL_ARG_SRC, *input_},
                             {DNNL_ARG_WEIGHTS, *weights_},
                             {DNNL_ARG_DST, *output_}});
A
Adam 已提交
151 152
    }
    astream.wait();
M
mozga-intel 已提交
153 154
  }

155
 private:
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  // DNNL always returns 2-dimensional data block as a result of computing
  // inner product. Hence the format 'nc' is always set for its output
  // primitive. Therefore, function SetOutputFormat is needed to choose
  // an appropriate format based on the number of input dimensions and
  // format of an input tensor.
  void SetOutputFormat(MKLDNNMemoryFormat in_format, Tensor* out) {
    int dim_num = out->dims().size();
    // In case of 2 dims, we set the only possible format, nc
    if (dim_num == 2) {
      out->set_format(MKLDNNMemoryFormat::nc);
      // In case of 3 dims, we generate a format that is based on number
      // of output dims and the layout of input format (nchw or nhwc).
    } else if (dim_num == 3) {
      if (in_format == MKLDNNMemoryFormat::nwc ||
          in_format == MKLDNNMemoryFormat::nhwc) {
        out->set_format(
            platform::MKLDNNFormatForSize(dim_num, MKLDNNMemoryFormat::nhwc));
      } else {
        out->set_format(
            platform::MKLDNNFormatForSize(dim_num, MKLDNNMemoryFormat::nchw));
      }
      // In any other case we overwrite the output format with the input one.
    } else {
      out->set_format(in_format);
    }
  }

183 184
  void UpdateDataPointers(const ExecutionContext& ctx, Tensor* out,
                          const Tensor* in) {
M
Michał Gallus 已提交
185 186 187 188 189
    input_->set_data_handle(to_void_cast(in->data<T_in>()));
    output_->set_data_handle(out->mutable_data<T_out>(ctx.GetPlace()));
    // If the primitive exists, but the output tensor has changed its
    // variable, update its format to what has been determined in first
    // call to CreateFcPrimitive method.
A
Adam 已提交
190
    if (out->format() == MKLDNNMemoryFormat::undef) {
191
      SetOutputFormat(in->format(), out);
192
    }
M
mozga-intel 已提交
193 194
  }

195
  dnnl::inner_product_forward::primitive_desc Create2DFcPrimDescriptor(
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
      const LoDTensor* input, const Tensor* weights, const Tensor* bias,
      LoDTensor* output, const ExecutionContext& ctx) {
    auto src_desc = CreateMemDescriptor<T_in>(input, input->format());
    auto weight_dims = Get2DWeightDimsForDNNL(weights);
    auto weights_desc =
        CreateMemDescriptor<T_w>(weight_dims, MKLDNNMemoryFormat::any);
    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);
    auto dst_desc = CreateMemDescriptor<T_out>(output, MKLDNNMemoryFormat::any);
    const auto attrs = CreatePostOps(ctx);
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get2DWeightDimsForDNNL(const Tensor* weights) {
    auto dims = framework::vectorize(weights->dims());
    std::swap(dims[0], dims[1]);  // swap input dim with output dim
    return dims;
  }

  memory::desc Create2DUserWeightsDesc() { return weights_->get_desc(); }

216
  dnnl::inner_product_forward::primitive_desc Create3DFcPrimDescriptor(
217 218 219
      const LoDTensor* input, const Tensor* weights, const Tensor* bias,
      LoDTensor* output, const ExecutionContext& ctx) {
    auto input_dims = framework::vectorize(input->dims());
220 221
    std::vector<int64_t> new_input_dims = {input_dims[0] * input_dims[1],
                                           input_dims[2], 1};
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    auto src_desc = CreateMemDescriptor<T_in>(new_input_dims, input->format());

    auto weight_dims = Get3DWeightDimsForDNNL(weights);
    auto weights_desc =
        CreateMemDescriptor<T_w>(weight_dims, MKLDNNMemoryFormat::any);

    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);

    auto dst_dims = {input_dims[0] * input_dims[1], weight_dims[0]};
    auto dst_desc =
        CreateMemDescriptor<T_out>(dst_dims, MKLDNNMemoryFormat::any);
    const auto attrs = CreatePostOps(ctx);
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get3DWeightDimsForDNNL(const Tensor* weights) {
    auto paddle_w_dims = framework::vectorize(weights->dims());
239
    return {paddle_w_dims[1], paddle_w_dims[0], 1};
240 241 242 243 244 245 246
  }

  memory::desc Create3DUserWeightsDesc(const Tensor* weights) {
    auto dims = Get3DWeightDimsForDNNL(weights);
    return CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oiw);
  }

247
  dnnl::inner_product_forward::primitive_desc Create4DFcPrimDescriptor(
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
      const LoDTensor* input, const Tensor* weights, const Tensor* bias,
      LoDTensor* output, const ExecutionContext& ctx) {
    auto src_desc = CreateMemDescriptor<T_in>(input, input->format());
    // Since MKL-DNN doesn't support 4D column-major data formats in
    // inner_product primitive, transpose the weights to be in
    // row-major format
    auto dims = Get4DWeightDimsForDNNL(input, weights);
    auto weights_desc = CreateMemDescriptor<T_w>(dims, MKLDNNMemoryFormat::any);
    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);
    auto dst_desc = CreateMemDescriptor<T_out>(output, MKLDNNMemoryFormat::any);
    const auto attrs = CreatePostOps(ctx);
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get4DWeightDimsForDNNL(const LoDTensor* input,
                                              const Tensor* weights) {
    auto old_w_dims = framework::vectorize(weights->dims());
    auto old_in_dims = framework::vectorize(input->dims());
    auto dims = {old_w_dims[1], old_in_dims[1], old_in_dims[2], old_in_dims[3]};
    return dims;
  }

  memory::desc Create4DUserWeightsDesc(const LoDTensor* input,
                                       const Tensor* weights) {
    auto dims = Get4DWeightDimsForDNNL(input, weights);
    return CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oihw);
M
mozga-intel 已提交
274 275
  }

M
Michał Gallus 已提交
276
  // Convert data from one data format to another
277 278 279
  std::shared_ptr<dnnl::memory> Reorder(const memory::desc& src_desc,
                                        const memory::desc& dst_desc,
                                        void* src_data) {
A
Adam 已提交
280
    auto src_mem = memory(src_desc, engine_, src_data);
281
    auto dst_mem = std::make_shared<memory>(dst_desc, engine_);
M
mozga-intel 已提交
282

283
    auto reorder = dnnl::reorder(src_mem, *dst_mem);
284
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
285 286 287 288 289 290 291

    {
      platform::RecordEvent record_reorder("int_reorder",
                                           platform::EventRole::kUniqueOp);
      reorder.execute(astream, src_mem, *dst_mem);
      astream.wait();
    }
M
mozga-intel 已提交
292

293
    return dst_mem;
M
mozga-intel 已提交
294 295
  }

M
Michał Gallus 已提交
296 297
  // Convert data from one data format to another and rescale it.
  // If the desired data type is (un)signed int8, quantization occurs here.
298
  std::shared_ptr<dnnl::memory> ReorderWithScale(
299 300
      const std::shared_ptr<memory> src_mem, const memory::desc& dst_md,
      const std::vector<float>& scale_data) {
301 302
    auto dst_mem = std::make_shared<dnnl::memory>(dst_md, engine_);
    dnnl::primitive_attr attributes;
M
Michał Gallus 已提交
303 304 305 306 307 308 309 310
    // According to MKL-DNN's documentation mask determines along which
    // dimensions should the scale be applied.
    // 0 - Single scale applied to whole tensor
    // 1 - Apply Scale along a slice of each dimension which index is 1.
    //     In case of weights quantization, that dimension is output,
    //     becuase we perform per-output-channel quantization
    int mask = CreateMask(0, scale_data.size() > 1);
    attributes.set_output_scales(mask, scale_data);
311
    auto reorder = dnnl::reorder(*src_mem, *dst_mem, attributes);
M
Michał Gallus 已提交
312

313
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
314 315 316 317
    {
      platform::RecordEvent record_reorder("int_reorder",
                                           platform::EventRole::kUniqueOp);
      reorder.execute(astream,
318
                      {{DNNL_ARG_FROM, *src_mem}, {DNNL_ARG_TO, *dst_mem}});
319 320
      astream.wait();
    }
M
Michał Gallus 已提交
321 322 323 324 325

    return dst_mem;
  }

  template <typename T>
326
  static dnnl::memory::desc CreateMemDescriptor(
A
Adam 已提交
327
      const std::vector<int64_t>& dims, MKLDNNMemoryFormat format) {
328 329
    return platform::MKLDNNMemDesc(dims, platform::MKLDNNGetDataType<T>(),
                                   format);
M
mozga-intel 已提交
330 331
  }

M
Michał Gallus 已提交
332
  template <typename T>
333 334
  static dnnl::memory::desc CreateMemDescriptor(const Tensor* tensor,
                                                MKLDNNMemoryFormat format) {
A
Adam 已提交
335
    auto dims = framework::vectorize(tensor->dims());
M
Michał Gallus 已提交
336
    return CreateMemDescriptor<T>(dims, format);
M
mozga-intel 已提交
337 338
  }

M
Michał Gallus 已提交
339
  template <typename T>
340 341
  dnnl::memory CreateMemory(const dnnl::memory::desc& desc,
                            const Tensor* tensor) {
A
Adam 已提交
342
    return CreateMemory(desc, platform::to_void_cast<T>(tensor->data<T>()));
M
mozga-intel 已提交
343 344
  }

345
  dnnl::memory CreateMemory(const dnnl::memory::desc& desc, void* data) {
A
Adam 已提交
346
    return memory(desc, engine_, data);
M
mozga-intel 已提交
347 348
  }

349
  template <typename T>
350 351
  std::shared_ptr<dnnl::memory> CreateMemoryToBeCached(
      const dnnl::memory::desc& desc, const Tensor* tensor) {
352 353 354 355
    return CreateMemoryToBeCached(desc,
                                  platform::to_void_cast<T>(tensor->data<T>()));
  }

356 357
  std::shared_ptr<dnnl::memory> CreateMemoryToBeCached(
      const dnnl::memory::desc& desc, void* data) {
358 359 360 361
    return std::make_shared<memory>(desc, engine_, data);
  }

  // Create weights memory and transform to default MKL-DNN format
362
  std::shared_ptr<dnnl::memory> CreateWeightsMemory(const Tensor* weights) {
A
Adam 已提交
363
    auto dims = framework::vectorize(weights->dims());
364
    std::swap(dims[0], dims[1]);  // Correct output dimensions
M
Michał Gallus 已提交
365 366
    auto src_desc = CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::io);
    auto dst_desc = CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oi);
367
    // Transpose weights through MKL-DNN's reorder from io to oi format.
A
Adam 已提交
368 369
    return Reorder(src_desc, dst_desc,
                   platform::to_void_cast<float>(weights->data<float>()));
M
Michał Gallus 已提交
370 371
  }

372 373
  void CacheWeightsAndBias(const MKLDNNDeviceContext& dev_ctx,
                           const ExecutionContext& ctx) {
374 375 376
    std::string key = platform::CreateKey(dev_ctx);
    key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);

377 378 379 380 381 382
    const std::string weights_key = key + ctx.InputName("W");
    const std::string bias_key = key + ctx.InputName("Bias");
    dev_ctx.SetBlob(weights_key, weights_);
    dev_ctx.SetBlob(bias_key, bias_);
  }

M
Michał Gallus 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
  // Compute the bias scales so that its values correspond to the
  // scale of data being an output of weights and input multiplication
  std::vector<float> ComputeBiasScales(const ExecutionContext& ctx) {
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> bias_scales(weight_scales_num);

#pragma omp parallel for
    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
        bias_scales[i] = 1.0f;
      else
        bias_scales[i] = scale_in_data * scale_weights_data[i];
    }

    return bias_scales;
  }

  // Correct output scale, to take into account scaling of input and weights
  // Since the data that comes out of input and weight multiplication is
  // scaled with its own scales, this data needs to be divided by
  // those scales to normalise them back to what their floating-point range
  // was. Then we multiply them by desired output scale we want on the output.
407 408
  std::tuple<std::vector<float>, float> ComputeOutputShiftScale(
      const ExecutionContext& ctx) {
M
Michał Gallus 已提交
409 410
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
411

M
Michał Gallus 已提交
412
    // If the output will be in floats, we don't multiply by scale_out.
413 414 415 416 417 418 419 420 421 422 423
    float activation_scale = 1.0f;
    float inner_scale = 1.0f;
    if (!ctx.Attr<bool>("force_fp32_output")) {
      // if has activation use it's scale, otherwise use inner scale.
      if (!ctx.Attr<std::string>("activation_type").empty()) {
        activation_scale = ctx.Attr<float>("Scale_out");
      } else {
        inner_scale = ctx.Attr<float>("Scale_out");
      }
    }

M
Michał Gallus 已提交
424 425 426 427 428 429
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> output_shift_scale(weight_scales_num);

#pragma omp parallel for
    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
430
        output_shift_scale[i] = inner_scale;
M
Michał Gallus 已提交
431 432
      else
        output_shift_scale[i] =
433
            inner_scale / (scale_in_data * scale_weights_data[i]);
M
Michał Gallus 已提交
434 435
    }

436
    return make_tuple(output_shift_scale, activation_scale);
M
Michał Gallus 已提交
437 438 439 440 441 442 443 444 445 446
  }

  // Computing MKL-DNN's scaling mask which determines along which dimension
  // slice should the scaling be applied. For more data plase refer to:
  // https://intel.github.io/mkl-dnn/group__c__api__attributes.html
  // Section dnnl_status_t DNNL_API dnnl_primitive_attr_set_output_scales
  int CreateMask(int slice_dimension, bool is_multi_channel_quantizied) {
    return is_multi_channel_quantizied ? 1 << slice_dimension : 0;
  }

447
  void QuantizeWeights(const ExecutionContext& ctx, memory::desc dst) {
448 449
    weights_ = ReorderWithScale(weights_, dst,
                                ctx.Attr<std::vector<float>>("Scale_weights"));
M
Michał Gallus 已提交
450 451 452 453 454
  }

  void QuantizeBias(const inner_product_forward::primitive_desc& fc_prim_desc,
                    const ExecutionContext& ctx) {
    auto bias_scales = ComputeBiasScales(ctx);
455
    bias_ = ReorderWithScale(bias_, fc_prim_desc.bias_desc(), bias_scales);
M
Michał Gallus 已提交
456 457 458
  }

  // Fuse relu into FC with activation type attribute has been set to 'relu'
459 460 461
  dnnl::primitive_attr CreatePostOps(const ExecutionContext& ctx) {
    dnnl::primitive_attr attributes;
    dnnl::post_ops post_operations;
M
Michał Gallus 已提交
462

463 464 465
    std::vector<float> output_shift_scale;
    float scale;
    std::tie(output_shift_scale, scale) = ComputeOutputShiftScale(ctx);
M
Michał Gallus 已提交
466 467 468 469 470 471
    int mask = CreateMask(1, output_shift_scale.size() > 1);
    attributes.set_output_scales(mask, output_shift_scale);

    if (ctx.Attr<std::string>("activation_type") == "relu") {
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 1.0f;  // beta
472
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_relu,
M
Michał Gallus 已提交
473
                                     negative_slope, placeholder);
474 475 476
    } else if (ctx.Attr<std::string>("activation_type") == "gelu") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
477
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_gelu,
478 479 480 481
                                     alpha, beta);
    } else if (ctx.Attr<std::string>("activation_type") == "gelu_tanh") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
482 483
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_gelu_tanh,
                                     alpha, beta);
484 485 486
    } else if (ctx.Attr<std::string>("activation_type") == "gelu_erf") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
487
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_gelu_erf,
488 489 490 491
                                     alpha, beta);
    } else if (ctx.Attr<std::string>("activation_type") == "tanh") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
492
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_tanh,
493 494 495 496
                                     alpha, beta);
    } else if (ctx.Attr<std::string>("activation_type") == "sigmoid") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
497
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_logistic,
498
                                     alpha, beta);
499 500 501 502 503
    } else if (ctx.Attr<std::string>("activation_type") == "mish") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_mish,
                                     alpha, beta);
J
jakpiase 已提交
504 505 506
    } else if (ctx.Attr<std::string>("activation_type") == "hard_swish") {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
507 508
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_hardswish,
                                     alpha, beta);
M
Michał Gallus 已提交
509 510 511 512
    }

    attributes.set_post_ops(post_operations);
    return attributes;
513
  }
M
mozga-intel 已提交
514

515 516 517 518 519
  dnnl::inner_product_forward::primitive_desc CreateFcPrimDesc(
      const dnnl::memory::desc& input_desc,
      const dnnl::memory::desc& weights_desc,
      const dnnl::memory::desc& bias_desc, const dnnl::memory::desc& dst_desc,
      const dnnl::primitive_attr& attrs) {
520 521 522
    auto fc_desc =
        inner_product_forward::desc(prop_kind::forward_scoring, input_desc,
                                    weights_desc, bias_desc, dst_desc);
M
mozga-intel 已提交
523

M
Michał Gallus 已提交
524
    return inner_product_forward::primitive_desc(fc_desc, attrs, engine_);
525
  }
M
mozga-intel 已提交
526

M
Michał Gallus 已提交
527 528
  // Create output memory based on output tensor and inner_product
  // primitive descriptor format chosen for output
529 530
  dnnl::memory CreateDstMemory(
      const dnnl::inner_product_forward::primitive_desc& fc_prim_desc,
531
      const ExecutionContext& ctx, Tensor* output) {
A
Adam 已提交
532 533
    auto dst_desc = fc_prim_desc.dst_desc();
    auto buffer_size = dst_desc.get_size();
M
Michał Gallus 已提交
534 535
    T_out* output_data =
        output->mutable_data<T_out>(ctx.GetPlace(), buffer_size);
A
Adam 已提交
536
    memory dst_mem(dst_desc, engine_, to_void_cast<T_out>(output_data));
537
    SetOutputFormat(ctx.Input<LoDTensor>("Input")->format(), output);
538

A
Adam 已提交
539
    return dst_mem;
540
  }
M
mozga-intel 已提交
541

542 543
  void RecomputeOutputDims(const ExecutionContext& ctx, const LoDTensor* input,
                           const Tensor* w, LoDTensor* output) {
L
luotao1 已提交
544
    int in_num_col_dims = ctx.Attr<int>("in_num_col_dims");
545 546 547 548
    bool padding_weights = ctx.Attr<bool>("padding_weights");
    PADDLE_ENFORCE_EQ(padding_weights, false,
                      platform::errors::PermissionDenied(
                          "Weight padding in fc can not be used in MKLDNN."));
L
luotao1 已提交
549
    std::vector<int64_t> output_dims;
550 551
    FCOutputSize(input->dims(), w->dims(), output_dims, in_num_col_dims,
                 padding_weights);
L
luotao1 已提交
552 553
    output->Resize(framework::make_ddim(output_dims));
    output->set_lod(input->lod());
554
  }
L
luotao1 已提交
555

556
 private:
557
  const dnnl::engine& engine_;
558 559
  paddle::optional<memory> input_;
  paddle::optional<memory> output_;
560 561
  std::shared_ptr<memory> bias_;
  std::shared_ptr<memory> weights_;
562
  paddle::optional<inner_product_forward> fc_;
563
};
M
mozga-intel 已提交
564

M
Michał Gallus 已提交
565 566 567 568 569 570
// Attempt to fetch cached primitive factory based on provided parameters
// of input format, weight dimensions and output name.
// If not cached, create a new one.
template <typename T_in, typename T_w, typename T_out>
static std::shared_ptr<FCPrimitiveFactory<T_in, T_w, T_out>>
GetPrimitiveFactory(const MKLDNNDeviceContext& dev_ctx,
571
                    const std::string& key) {
572
  auto prim_creator =
M
Michał Gallus 已提交
573 574
      std::static_pointer_cast<FCPrimitiveFactory<T_in, T_w, T_out>>(
          dev_ctx.GetBlob(key));
575
  if (prim_creator == nullptr) {
576 577
    prim_creator = std::make_shared<FCPrimitiveFactory<T_in, T_w, T_out>>(
        dev_ctx.GetEngine());
578
    dev_ctx.SetBlob(key, prim_creator);
M
mozga-intel 已提交
579 580
  }

581 582
  return prim_creator;
}
M
mozga-intel 已提交
583

M
Michał Gallus 已提交
584 585 586
// Choose appropriate primitive factory implementation based on inferred
// output type (uint8, int8 or float).
template <typename T_in, typename T_w>
587
static void ExecuteFc(const ExecutionContext& ctx, const LoDTensor* input,
A
Adam 已提交
588
                      const Tensor* w, const Tensor* bias, LoDTensor* output,
589 590
                      bool fuse_relu, bool force_fp32_output) {
  auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
591 592 593 594 595
  std::string prim_key = platform::CreateKey(
      dev_ctx, input->format(), input->dims()[0],
      framework::vectorize<int>(w->dims()), ctx.OutputName("Out"));
  prim_key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, prim_key);

M
Michał Gallus 已提交
596 597
  constexpr bool is_int8 =
      std::is_same<T_in, int8_t>::value || std::is_same<T_in, uint8_t>::value;
598 599
  bool is_bfloat16 = std::is_same<T_in, paddle::platform::bfloat16>::value;
  if ((!is_int8 && !is_bfloat16) || force_fp32_output) {
600 601
    GetPrimitiveFactory<T_in, T_w, float>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
602 603 604
  } else if (is_bfloat16) {
    GetPrimitiveFactory<T_in, T_w, platform::bfloat16>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
M
Michał Gallus 已提交
605
  } else if (fuse_relu) {
606 607
    GetPrimitiveFactory<T_in, T_w, uint8_t>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
M
Michał Gallus 已提交
608
  } else {
609 610
    GetPrimitiveFactory<T_in, T_w, int8_t>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
M
Michał Gallus 已提交
611 612 613 614 615
  }
}

template <typename T_in, typename T_w>
class FCMKLDNNOpKernel : public framework::OpKernel<T_in> {
M
mozga-intel 已提交
616 617
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
M
Michał Gallus 已提交
618 619 620
    PADDLE_ENFORCE_EQ(
        platform::is_cpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("FC MKL-DNN must use CPUPlace."));
621
    platform::MKLDNNDeviceContext::tls().log_lib_version();
622 623
    auto input = ctx.Input<LoDTensor>("Input");
    auto w = ctx.Input<Tensor>("W");
T
tensor-tang 已提交
624
    auto bias = ctx.Input<Tensor>("Bias");
625
    auto output = ctx.Output<LoDTensor>("Out");
M
mozga-intel 已提交
626

M
Michał Gallus 已提交
627 628 629
    bool fuse_relu = ctx.Attr<std::string>("activation_type") == "relu";
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

630 631
    ExecuteFc<T_in, T_w>(ctx, input, w, bias, output, fuse_relu,
                         force_fp32_output);
M
mozga-intel 已提交
632

633
    output->set_layout(DataLayout::kMKLDNN);
M
mozga-intel 已提交
634 635 636 637 638
  }
};
}  // namespace operators
}  // namespace paddle

M
Michał Gallus 已提交
639 640 641 642 643 644 645 646
// Weights of FC are by default stored using fp32, template argument of weight
// data type implies their destination data type. (What's eventually going to
// be used during computations of kernel).
namespace ops = paddle::operators;
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    FP32, ops::kFCMKLDNNFP32,
                                    ops::FCMKLDNNOpKernel<float, float>);

647 648 649 650 651
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    fc, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kFCMKLDNNFP32,
    ops::FCMKLDNNOpKernel<paddle::platform::bfloat16,
                          paddle::platform::bfloat16>);

M
Michał Gallus 已提交
652 653 654 655 656 657 658
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    U8, ops::kFCMKLDNNINT8,
                                    ops::FCMKLDNNOpKernel<uint8_t, int8_t>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    S8, ops::kFCMKLDNNINT8,
                                    ops::FCMKLDNNOpKernel<int8_t, int8_t>);