conv_base_helper.h 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <array>
#include <memory>
#include <string>
#include <vector>
22

23 24 25
#include "paddle/fluid/framework/conv_search_cache.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
26
#include "paddle/phi/kernels/autotune/cache.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DataLayout = platform::DataLayout;
using framework::AlgorithmsCache;
using framework::ConvSearchCache;

template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

// As the basic for SearchAlgorithm struct.
template <typename PerfT>
struct SearchAlgorithm {};

// As the container of searchAlgorithm::Find() result.
template <typename AlgoT>
struct SearchResult {
46
  SearchResult() {}
H
hong 已提交
47 48 49 50
  explicit SearchResult(const phi::autotune::DnnNode& node)
      : algo(static_cast<AlgoT>(node.algo)),
        workspace_size(node.workspace_size) {}

51
  explicit SearchResult(AlgoT a) : algo(a) {}
H
hong 已提交
52 53
  explicit SearchResult(AlgoT a, float t, size_t size)
      : algo(a), time(t), workspace_size(size) {}
54

55 56 57 58 59
  AlgoT algo = static_cast<AlgoT>(0);
  float time = -1.f;
  size_t workspace_size = 0;
};

60 61 62 63 64 65 66 67
template <typename T>
static std::ostream& operator<<(std::ostream& out, const std::vector<T>& v) {
  out << "[";
  for (auto const& tmp : v) out << tmp << ",";
  out << "]";
  return out;
}

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
// As the container of conv relevant descriptors.
template <typename HandleT, typename DataT>
struct ConvArgsBase {
  HandleT handle;
  platform::TensorDescriptor idesc, odesc;
  platform::FilterDescriptor wdesc;
  platform::ConvolutionDescriptor cdesc;
  const framework::Tensor *x, *w, *o;
  DataT cudnn_dtype;

  // strides
  std::vector<int> s;
  // paddings
  std::vector<int> p;
  // dilations
  std::vector<int> d;

H
hong 已提交
85 86 87 88 89 90
  // groups
  int group;

  // data foramt
  DataLayout data_layout;

91 92 93 94 95 96
  ConvArgsBase(const framework::Tensor* x,
               const framework::Tensor* w,
               const framework::Tensor* o,
               const std::vector<int> s,
               const std::vector<int> p,
               const std::vector<int> d,
H
hong 已提交
97 98 99 100 101 102 103 104 105 106 107 108
               DataT dtype,
               int g,
               DataLayout layout)
      : x(x),
        w(w),
        o(o),
        s(s),
        p(p),
        d(d),
        cudnn_dtype(dtype),
        group(g),
        data_layout(layout) {}
109 110

  template <typename T>
H
hong 已提交
111
  phi::autotune::ConvCacheKey Convert2ConvCacheKey() const {
112 113 114
    auto x_shape = phi::vectorize(x->dims());
    auto w_shape = phi::vectorize(w->dims());
    VLOG(10) << "[ConvArgs] x_dims=" << x_shape << ", w_dims=" << w_shape
H
hong 已提交
115 116 117 118 119 120
             << ", strides=" << s << ", paddings=" << p << ", dilations=" << d
             << ",data= " << paddle::experimental::CppTypeToDataType<T>::Type()
             << ", group=" << group
             << ", data layout=" << static_cast<int64_t>(data_layout);

    return phi::autotune::ConvCacheKey(
121 122 123 124 125
        x_shape,
        w_shape,
        p,
        s,
        d,
H
hong 已提交
126 127 128
        paddle::experimental::CppTypeToDataType<T>::Type(),
        group,
        static_cast<int64_t>(data_layout));
129
  }
130 131 132
};

static inline void GetNCDHW(const framework::DDim& dims,
133 134 135 136 137 138
                            const DataLayout& layout,
                            int* N,
                            int* C,
                            int* D,
                            int* H,
                            int* W) {
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
  *N = dims[0];
  *C = layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
  int i = layout == DataLayout::kNCHW ? 0 : 1;
  if (dims.size() == 5) {
    *D = dims[2 - i];
    *H = dims[3 - i];
    *W = dims[4 - i];
  } else {
    *D = 1;
    *H = dims[2 - i];
    *W = dims[3 - i];
  }
}

}  // namespace operators
}  // namespace paddle