gather_nd_op.cc 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17 18 19
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/ternary.h"
20 21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

class GatherNdOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
31
    auto* x = ctx.Input<framework::Tensor>("X");
32
    const auto& x_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
G
Guo Sheng 已提交
33 34 35 36 37
    return framework::OpKernelType(
        x_type,
        x_type == framework::proto::VarType::BOOL
            ? x->place()  // to be consistent with compare and logical ops
            : ctx.device_context().GetPlace());
38 39 40 41 42 43 44 45 46 47
  }
};

class GatherNdGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
48 49 50
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  }
};

class GatherNdOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The source input of gather_nd op");
    AddInput("Index", "The index input of gather_nd op");
    AddOutput("Out", "The output of gather_nd op");
    AddComment(R"DOC(
    Gather_Nd Operator.

    This function is actually a high-dimensional extension of gather 
    and supports for simultaneous indexing by multiple axes. Out is 
    obtained by gathering slices from X into a tensor with shape 
    Index.shape[:-1] + X.shape[Index.shape[-1]:].

    Example:
   
    Given:
         X = [[[ 0,  1,  2,  3],
               [ 4,  5,  6,  7],
               [ 8,  9, 10, 11]],
              [[12, 13, 14, 15],
               [16, 17, 18, 19],
               [20, 21, 22, 23]]]
       
         X.shape = (2, 3, 4)

   *Case 1:

       Index = [[1]]

    we get:
       Out = 
            [[12, 13, 14, 15],
             [16, 17, 18, 19],
             [20, 21, 22, 23]]

   *Case 2:

       Index = [[0,2]]

    we get:
        
       Out =  [8, 9, 10, 11]

   *Case 3:

       Index = [[1, 2, 3]]

    we get:

       Out = [23]

)DOC");
  }
};

H
hong 已提交
110 111
template <typename T>
class GatherNdGradOpMaker : public framework::SingleGradOpMaker<T> {
112
 public:
H
hong 已提交
113
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
114 115

 protected:
116
  void Apply(GradOpPtr<T> op) const override {
117
    op->SetType("gather_nd_grad");
H
hong 已提交
118 119 120 121 122
    op->SetInput("Index", this->Input("Index"));
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
123 124 125
  }
};

126
DECLARE_NO_NEED_BUFFER_VARS_INFERER(GatherNdGradNoNeedBufferVarInferer, "X");
127 128 129 130 131 132

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

133 134 135 136 137 138
DELCARE_INFER_SHAPE_FUNCTOR(gather_nd, GatherNdInferShapeFunctor,
                            PT_INFER_META(phi::GatherNdInferMeta));

DELCARE_INFER_SHAPE_FUNCTOR(gather_nd_grad, GatherNdGradInferShapeFunctor,
                            PT_INFER_META(phi::GatherNdGradInferMeta));

139
REGISTER_OPERATOR(gather_nd, ops::GatherNdOp, ops::GatherNdOpMaker,
H
hong 已提交
140
                  ops::GatherNdGradOpMaker<paddle::framework::OpDesc>,
141 142
                  ops::GatherNdGradOpMaker<paddle::imperative::OpBase>,
                  GatherNdInferShapeFunctor);
143 144

REGISTER_OPERATOR(gather_nd_grad, ops::GatherNdGradOp,
145 146
                  ops::GatherNdGradNoNeedBufferVarInferer,
                  GatherNdGradInferShapeFunctor);