binary.py 15.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from paddle import _C_ops
16
from paddle.fluid.framework import dygraph_only, core
17 18 19
from paddle import in_dynamic_mode
from paddle.fluid.layer_helper import LayerHelper
from .unary import cast
20 21 22

__all__ = []

23 24 25 26 27 28 29 30 31
_int_dtype_ = [
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
    core.VarDesc.VarType.BOOL,
]

32 33 34 35

@dygraph_only
def matmul(x, y, name=None):
    """
36
    Note:
37
        This API is only supported from ``CUDA 11.0`` .
38

39 40
    Applies matrix multiplication of two Tensors.

41
    The supported input/output Tensor type are as follows:
42

43 44 45 46 47 48 49 50 51
    Note:
        x[SparseCsrTensor] @ y[SparseCsrTensor] -> out[SparseCsrTensor]
        x[SparseCsrTensor] @ y[DenseTensor] -> out[DenseTensor]
        x[SparseCooTensor] @ y[SparseCooTensor] -> out[SparseCooTensor]
        x[SparseCooTensor] @ y[DenseTensor] -> out[DenseTensor]

    It supports backward propagation.

    Dimensions `x` and `y` must be >= 2D. Automatic broadcasting of Tensor is not supported.
52
    the shape of `x` should be `[*, M, K]` , and the shape of `y` should be `[*, K, N]` , where `*`
53 54 55
    is zero or more batch dimensions.

    Args:
56 57
        x (SparseTensor): The input tensor. It can be SparseCooTensor/SparseCsrTensor. The data type can be float32 or float64.
        y (SparseTensor|DenseTensor): The input tensor. It can be SparseCooTensor/SparseCsrTensor/DenseTensor. The data type can be float32 or float64.
58
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
59

60
    Returns:
61
        SparseTensor|DenseTensor: Determined by `x` and `y` .
62 63 64 65 66

    Examples:

        .. code-block:: python

67
            # required: gpu
68 69 70
            import paddle

            # csr @ dense -> dense
71 72 73
            crows = [0, 1, 2, 3]
            cols = [1, 2, 0]
            values = [1., 2., 3.]
74
            csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, [3, 3])
75 76 77
            # Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0, 1, 2, 3],
            #        cols=[1, 2, 0],
78 79
            #        values=[1., 2., 3.])
            dense = paddle.ones([3, 2])
80
            out = paddle.sparse.matmul(csr, dense)
81 82 83 84 85 86 87 88
            # Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1., 1.],
            #         [2., 2.],
            #         [3., 3.]])

            # coo @ dense -> dense
            indices = [[0, 1, 2], [1, 2, 0]]
            values = [1., 2., 3.]
89
            coo = paddle.sparse.sparse_coo_tensor(indices, values, [3, 3])
90
            # Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
91
            #        indices=[[0, 1, 2],
92
            #                 [1, 2, 0]],
93 94
            #        values=[1., 2., 3.])
            dense = paddle.ones([3, 2])
95
            out = paddle.sparse.matmul(coo, dense)
96 97 98 99
            # Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1., 1.],
            #         [2., 2.],
            #         [3., 3.]])
100
    """
101
    return _C_ops.sparse_matmul(x, y)
102 103 104 105 106


@dygraph_only
def masked_matmul(x, y, mask, name=None):
    """
107
    Note:
108
        This API is only supported from ``CUDA 11.3`` .
109

110 111
    Applies matrix multiplication of two Dense Tensors.

112
    The supported input/output Tensor layout are as follows:
113

114 115 116 117 118 119 120 121 122 123 124
    Note:
        x[DenseTensor] @ y[DenseTensor] * mask[SparseCooTensor] -> out[SparseCooTensor]
        x[DenseTensor] @ y[DenseTensor] * mask[SparseCsrTensor] -> out[SparseCsrTensor]

    It supports backward propagation.

    Dimensions `x` and `y` must be  >= 2D. Automatic broadcasting of Tensor is not supported.
    the shape of `x` should be `[*, M, K]` , and the shape of `y` should be `[*, K, N]` , and the shape of `mask` should be `[*, M, N]` ,
    where `*` is zero or more batch dimensions.

    Args:
125 126 127
        x (DenseTensor): The input tensor. It is DenseTensor. The data type can be float32 or float64.
        y (DenseTensor): The input tensor. It is DenseTensor. The data type can be float32 or float64.
        mask (SparseTensor): The mask tensor, which can be SparseCooTensor/SparseCsrTensor. It specify sparse coordinates. The data type can be float32 or float64.
128 129 130
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
131
        SparseTensor: SparseCooTensor or SparseCsrTensor, which is same with `mask` .
132 133 134 135 136

    Examples:

        .. code-block:: python

137
            # required: gpu
138 139 140 141
            import paddle
            paddle.seed(100)

            # dense @ dense * csr_mask -> csr
142 143 144 145
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1., 2., 3., 4., 5.]
            dense_shape = [3, 4]
146
            mask = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
147 148 149 150 151 152 153 154
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #       crows=[0, 2, 3, 5],
            #       cols=[1, 3, 2, 0, 1],
            #       values=[1., 2., 3., 4., 5.])

            x = paddle.rand([3, 5])
            y = paddle.rand([5, 4])

155
            out = paddle.sparse.masked_matmul(x, y, mask)
156 157 158
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0, 2, 3, 5],
            #        cols=[1, 3, 2, 0, 1],
159
            #        values=[0.98986477, 0.97800624, 1.14591956, 0.68561077, 0.94714981])
160 161

    """
162
    return _C_ops.sparse_masked_matmul(x, y, mask)
163 164 165 166 167


@dygraph_only
def mv(x, vec, name=None):
    """
168
    Note:
169 170
        This API is only supported from ``CUDA 11.0`` .

171 172
    Applies matrix-vector product of Sparse Matrix 'x' and Dense vector 'vec' .

173 174 175
    The supported input/output Tensor layout are as follows:

    Note:
176 177
        x[SparseCsrTensor] @ vec[DenseTensor] -> out[DenseTensor]
        x[SparseCooTensor] @ vec[DenseTensor] -> out[DenseTensor]
178 179 180

    It supports backward propagation.

181
    The shape of `x` should be `[M, N]` , and the shape of `vec` should be `[N]` ,
182 183 184
    and the shape of `out` will be `[M]` .

    Args:
185 186
        x (SparseTensor): The input 2D tensor. It must be SparseCooTensor/SparseCsrTensor. The data type can be float32 or float64.
        vec (DenseTensor): The input 1D tensor. It must be DenseTensor vector. The data type can be float32 or float64.
187
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
188

189
    Returns:
190
        DenseTensor: 1D DenseTensor whose dtype is same with input.
191 192 193 194

    Examples:

        .. code-block:: python
195

196
            # required: gpu
197 198 199 200
            import paddle
            paddle.seed(100)

            # csr @ dense -> dense
201 202 203 204
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1., 2., 3., 4., 5.]
            dense_shape = [3, 4]
205
            csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
206 207 208 209 210 211
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0, 2, 3, 5],
            #        cols=[1, 3, 2, 0, 1],
            #        values=[1., 2., 3., 4., 5.])
            vec = paddle.randn([4])

212
            out = paddle.sparse.mv(csr, vec)
213 214
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-3.85499096, -2.42975140, -1.75087738])
215 216

    """
217
    return _C_ops.sparse_mv(x, vec)
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250


def add(x, y, name=None):
    """
    Add two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
    type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
    The equation is:

    .. math::
        out = x + y

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: the result tensor.

    Examples:

    ..  code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        paddle.device.set_device("cpu")

        with _test_eager_guard():
            x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
            y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
            sparse_x = x.to_sparse_csr()
            sparse_y = y.to_sparse_csr()
251
            sparse_z = paddle.sparse.add(sparse_x, sparse_y)
252 253 254 255 256 257 258 259
            print(sparse_z.to_dense())

        # [[ 0., -1.,  0.,  0.],
        # [ 0.,  2., -6.,  0.],
        # [ 6.,  8.,  4.,  8.]]

    """
    if y.dtype != x.dtype:
Z
zhangkaihuo 已提交
260
        y = cast(y, None, x.dtype)
261 262 263 264 265 266 267 268 269 270 271 272 273

    if in_dynamic_mode():
        return _C_ops.sparse_add(x, y)
    else:
        op_type = 'sparse_add'
        inputs = {'x': x, 'y': y}
        helper = LayerHelper(op_type)
        out = helper.create_sparse_variable_for_type_inference(x.dtype)
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs={'out': out},
                         attrs={})
        return out
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307


@dygraph_only
def subtract(x, y, name=None):
    """
    Subtract two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
    type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
    The equation is:

    .. math::
        out = x - y

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: the result tensor.

    Examples:

    ..  code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        paddle.device.set_device("cpu")

        with _test_eager_guard():
            x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
            y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
            sparse_x = x.to_sparse_csr()
            sparse_y = y.to_sparse_csr()
308
            sparse_z = paddle.sparse.subtract(sparse_x, sparse_y)
309 310 311 312 313 314 315 316
            print(sparse_z.to_dense())

        # [[ 0., -1.,  0.,  4.],
        # [ 0., -2.,  0.,  0.],
        # [ 2.,  2., -4., -8.]]

    """
    if y.dtype != x.dtype:
317 318
        y = _C_ops.sparse_cast(y, None, x.dtype)
    return _C_ops.sparse_subtract(x, y)
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352


@dygraph_only
def multiply(x, y, name=None):
    """
    Multiply two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
    type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
    The equation is:

    .. math::
        out = x * y

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: the result tensor.

    Examples:

    ..  code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        paddle.device.set_device("cpu")

        with _test_eager_guard():
            x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
            y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
            sparse_x = x.to_sparse_csr()
            sparse_y = y.to_sparse_csr()
353
            sparse_z = paddle.sparse.multiply(sparse_x, sparse_y)
354 355 356 357 358 359 360 361
            print(sparse_z.to_dense())

        # [[ 0.,  0.,  0., -4.],
        # [ 0.,  0.,  9.,  0.],
        # [ 8., 15.,  0.,  0.]]

    """
    if isinstance(y, (int, float)):
362
        return _C_ops.sparse_scale(x, float(y), 0.0, True)
363 364
    else:
        if y.dtype != x.dtype:
365 366
            y = _C_ops.sparse_cast(y, None, x.dtype)
        return _C_ops.sparse_multiply(x, y)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400


@dygraph_only
def divide(x, y, name=None):
    """
    Divide two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
    type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
    The equation is:

    .. math::
        out = x / y

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: the result tensor.

    Examples:

    ..  code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        paddle.device.set_device("cpu")

        with _test_eager_guard():
            x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
            y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
            sparse_x = x.to_sparse_csr()
            sparse_y = y.to_sparse_csr()
401
            sparse_z = paddle.sparse.divide(sparse_x, sparse_y)
402 403 404 405 406 407 408 409
            print(sparse_z.to_dense())

        # [[ nan      , -inf.     ,  nan      , -1.       ],
        # [ nan      ,  0.       ,  1.       ,  nan      ],
        # [ 2.       , 1.66666663,  0.       ,  0.       ]]

    """
    if x.dtype in _int_dtype_:
410
        x = _C_ops.sparse_cast(x, None, core.VarDesc.VarType.FP32)
411 412

    if isinstance(y, (int, float)):
413
        return _C_ops.sparse_divide_scalar(x, float(y))
414 415
    else:
        if y.dtype != x.dtype:
416 417
            y = _C_ops.sparse_cast(y, None, x.dtype)
        return _C_ops.sparse_divide(x, y)
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443


@dygraph_only
def is_same_shape(x, y):
    """
    Return the results of shape comparison between two Tensors, check whether x.shape equal to y.shape.
    Any two type Tensor among DenseTensor/SparseCooTensor/SparseCsrTensor are supported.

    Args:
        x (Tensor): The input tensor. It can be DenseTensor/SparseCooTensor/SparseCsrTensor.
        y (Tensor): The input tensor. It can be DenseTensor/SparseCooTensor/SparseCsrTensor.

    Returns:
        bool: True for same shape and False for different shape.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand([2, 3, 8])
            y = paddle.rand([2, 3, 8])
            y = y.to_sparse_csr()
            z = paddle.rand([2, 5])

444
            paddle.sparse.is_same_shape(x, y)
445
            # True
446
            paddle.sparse.is_same_shape(x, z)
447 448 449 450
            # False

    """
    return x.is_same_shape(y)