test_imperative_double_grad.py 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
H
hong 已提交
16
import paddle
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
from paddle.fluid.wrapped_decorator import wrap_decorator
import unittest
from unittest import TestCase
import numpy as np


def _dygraph_guard_(func):
    def __impl__(*args, **kwargs):
        if fluid.in_dygraph_mode():
            return func(*args, **kwargs)
        else:
            with fluid.dygraph.guard():
                return func(*args, **kwargs)

    return __impl__


dygraph_guard = wrap_decorator(_dygraph_guard_)


def random_var(size, low=-1, high=1, dtype='float32'):
    x_np = np.random.uniform(low=low, high=high, size=size).astype(dtype)
    return fluid.dygraph.to_variable(x_np)


class TestDygraphDoubleGrad(TestCase):
    def setUp(self):
        self.sort_sum_gradient = False
        self.shape = [5, 10]

    def grad(self,
             outputs,
             inputs,
             grad_outputs=None,
Z
Zeng Jinle 已提交
51 52 53 54
             no_grad_vars=None,
             retain_graph=None,
             create_graph=False,
             allow_unused=False):
55 56
        backward_strategy = fluid.dygraph.BackwardStrategy()
        backward_strategy.sort_sum_gradient = self.sort_sum_gradient
Z
Zeng Jinle 已提交
57
        return fluid.dygraph.grad(
58 59 60
            outputs=outputs,
            inputs=inputs,
            grad_outputs=grad_outputs,
Z
Zeng Jinle 已提交
61 62
            no_grad_vars=no_grad_vars,
            retain_graph=retain_graph,
63
            create_graph=create_graph,
Z
Zeng Jinle 已提交
64
            allow_unused=allow_unused,
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
            backward_strategy=backward_strategy)

    @dygraph_guard
    def test_exception(self):
        with self.assertRaises(AssertionError):
            self.grad(None, None)

        shape = self.shape

        with self.assertRaises(AssertionError):
            self.grad(1, random_var(shape))

        with self.assertRaises(AssertionError):
            self.grad(random_var(shape), 1)

        with self.assertRaises(AssertionError):
            self.grad([1], [random_var(shape)])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [1])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape), random_var(shape)],
                      [random_var(shape)], [random_var(shape)])

        with self.assertRaises(AssertionError):
Z
Zeng Jinle 已提交
91 92
            self.grad(
                [random_var(shape)], [random_var(shape)], no_grad_vars=[1])
93 94

        with self.assertRaises(AssertionError):
Z
Zeng Jinle 已提交
95
            self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1)
96 97 98 99 100 101 102 103

    @dygraph_guard
    def test_simple_example(self):
        x = random_var(self.shape)
        x.stop_gradient = False
        y = x + 1

        for create_graph in [False, True]:
Z
Zeng Jinle 已提交
104 105
            dx, = self.grad(
                [x], [x], create_graph=create_graph, retain_graph=True)
106 107 108 109
            self.assertEqual(dx.shape, x.shape)
            self.assertTrue(np.all(dx.numpy() == 1))
            self.assertNotEqual(dx.stop_gradient, create_graph)

Z
Zeng Jinle 已提交
110 111
            dx_mul_2, = self.grad(
                [y, x], [x], create_graph=create_graph, retain_graph=True)
112 113 114 115
            self.assertEqual(dx_mul_2.shape, x.shape)
            self.assertTrue(np.all(dx_mul_2.numpy() == 2))
            self.assertNotEqual(dx_mul_2.stop_gradient, create_graph)

Z
Zeng Jinle 已提交
116 117
            none_grad, = self.grad(
                [x], [y], create_graph=create_graph, allow_unused=True)
118 119 120 121 122 123 124 125 126 127 128
            self.assertTrue(none_grad is None)

            grad_with_none_and_not_none, = self.grad(
                [x, y], [y], create_graph=create_graph)
            self.assertTrue(grad_with_none_and_not_none.shape, x.shape)
            self.assertTrue(np.all(grad_with_none_and_not_none.numpy() == 1))
            self.assertNotEqual(grad_with_none_and_not_none.stop_gradient,
                                create_graph)

    @dygraph_guard
    def test_none_one_initial_gradient(self):
129 130 131 132 133 134 135 136 137 138 139 140 141
        numel = 1
        for s in self.shape:
            numel *= s

        half_numel = int(numel / 2)
        half_x_positive = np.random.uniform(low=1, high=2, size=[half_numel])
        half_x_negative = np.random.uniform(
            low=-2, high=-1, size=[numel - half_numel])
        x_np = np.array(list(half_x_positive) + list(half_x_negative)).astype(
            'float32')
        np.random.shuffle(x_np)

        x = fluid.dygraph.to_variable(x_np)
142 143
        x.stop_gradient = False

144 145
        alpha = 0.2
        y = fluid.layers.leaky_relu(x, alpha=alpha)
146 147 148 149
        y = y * y
        z = y * y

        x_np = x.numpy()
150 151
        relu_x_np = np.maximum(x_np, alpha * x_np).astype('float32')
        relu_x_grad_np = ((x_np > 0) + (x_np < 0) * alpha).astype('float32')
152 153 154 155
        dy_expected = (relu_x_np * relu_x_grad_np * 2).astype('float32')
        dz_expected = (np.power(relu_x_np, 3) * relu_x_grad_np *
                       4).astype('float32')

156 157
        random_grad_y = random_var(y.shape, low=1, high=2)
        random_grad_z = random_var(z.shape, low=1, high=2)
158 159 160 161 162 163 164 165 166 167 168 169 170
        ones_grad_y = np.ones(y.shape).astype('float32')
        ones_grad_z = np.ones(z.shape).astype('float32')

        original_random_grad_y = random_grad_y.numpy()
        original_random_grad_z = random_grad_z.numpy()

        for grad_y in [random_grad_y]:
            for grad_z in [random_grad_z]:
                for create_graph in [False, True]:
                    dx_actual, = self.grad(
                        outputs=[y, z],
                        inputs=[x],
                        grad_outputs=[grad_y, grad_z],
Z
Zeng Jinle 已提交
171 172
                        create_graph=create_graph,
                        retain_graph=True)
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

                    grad_y_np = ones_grad_y if grad_y is None else grad_y.numpy(
                    )
                    grad_z_np = ones_grad_z if grad_z is None else grad_z.numpy(
                    )

                    dx_expected = dy_expected * grad_y_np + dz_expected * grad_z_np
                    self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

                    if grad_y is not None:
                        self.assertTrue(grad_y.stop_gradient)
                        self.assertTrue(
                            np.array_equal(grad_y.numpy(),
                                           original_random_grad_y))

                    if grad_z is not None:
                        self.assertTrue(grad_z.stop_gradient)
                        self.assertTrue(
                            np.array_equal(grad_z.numpy(),
                                           original_random_grad_z))

    @dygraph_guard
    def test_example_with_gradient_accumulation_and_create_graph(self):
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        z = y + 1
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y, z, w

        dx_actual, = self.grad([w_mean], [x], create_graph=True)
        del w_mean

        self.assertFalse(dx_actual.stop_gradient)

        # Theoritical result based on math calculation
        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
                       (x_np > 0) * 2).astype('float32')
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward()

        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 / float(numel) *
                           (x_np + dx_expected *
                            (x_np > 0) * 2 / float(numel))).astype('float32')
        self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))

    @dygraph_guard
Z
Zeng Jinle 已提交
228
    def test_example_with_gradient_accumulation_and_no_grad_vars(self):
229 230 231 232 233 234 235 236 237 238 239 240 241 242
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y1 = fluid.layers.relu(x)
        y2 = fluid.layers.relu(x)
        z = y1 + y2
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y1, z, w

        dx_actual, = self.grad(
Z
Zeng Jinle 已提交
243
            [w_mean], [x], create_graph=True, no_grad_vars=[y2])
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

        self.assertFalse(y2.stop_gradient)
        self.assertFalse(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + y2.numpy()) *
                       (x_np > 0) * 2).astype('float32')
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward()

        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 / float(numel) *
                           (x_np + dx_expected *
                            (x_np > 0) * 4 / float(numel))).astype('float32')
        self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))

    @dygraph_guard
    def test_example_with_gradient_accumulation_and_not_create_graph(self):
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        z = y + 1
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y, z, w

        dx_actual, = self.grad([w_mean], [x], create_graph=False)
        del w_mean

        self.assertTrue(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
                       (x_np > 0) * 2).astype('float32')

        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward()

        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 * x_np / float(numel)).astype('float32')
        self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))


class TestDygraphDoubleGradSortGradient(TestDygraphDoubleGrad):
    def setUp(self):
        self.sort_sum_gradient = True
        self.shape = [5, 10]


H
hong 已提交
299 300
class TestDygraphDoubleGradVisitedUniq(TestCase):
    def test_compare(self):
301 302
        value = np.random.uniform(-0.5, 0.5, 100).reshape(10, 2,
                                                          5).astype("float32")
H
hong 已提交
303 304

        def model_f(input):
305
            linear = fluid.dygraph.Linear(5, 3, bias_attr=False)
H
hong 已提交
306 307
            for i in range(10):
                if i == 0:
308
                    out = linear(input)
H
hong 已提交
309
                else:
310
                    out = out + linear(input)
H
hong 已提交
311 312 313 314 315 316 317 318 319 320 321
            return out

        backward_strategy = fluid.dygraph.BackwardStrategy()
        backward_strategy.sort_sum_gradient = True
        with fluid.dygraph.guard():
            paddle.manual_seed(123)
            a = fluid.dygraph.to_variable(value)
            a.stop_gradient = False

            out = model_f(a)

322 323 324
            dx = fluid.dygraph.grad(
                outputs=[out],
                inputs=[a],
325
                create_graph=False,
326 327 328
                only_inputs=True,
                allow_unused=False,
                backward_strategy=backward_strategy)
H
hong 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341

            grad_1 = dx[0].numpy()

        with fluid.dygraph.guard():
            paddle.manual_seed(123)
            a = fluid.dygraph.to_variable(value)
            a.stop_gradient = False

            out = model_f(a)
            out.backward(backward_strategy)

            grad_2 = a.gradient()

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        self.assertTrue(np.array_equal(grad_1, grad_2))


class TestRaiseNoDoubleGradOp(TestCase):
    def raise_no_grad_op(self):
        with fluid.dygraph.guard():
            x = fluid.layers.ones(shape=[2, 3, 2, 2], dtype='float32')
            x.stop_gradient = False
            y = paddle.fluid.layers.batch_norm(x)

            dx = fluid.dygraph.grad(
                outputs=[y], inputs=[x], create_graph=True,
                retain_graph=True)[0]

            loss = fluid.layers.reduce_mean(dx)
            loss.backward()

    def test_raise(self):
        self.assertRaises(fluid.core.EnforceNotMet, self.raise_no_grad_op)
H
hong 已提交
361 362


363 364
if __name__ == '__main__':
    unittest.main()