bincount_kernel.cu 6.0 KB
Newer Older
0
0x45f 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/bincount_kernel.h"

#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

using paddle::platform::PADDLE_CUDA_NUM_THREADS;

inline int GET_BLOCKS(const int N) {
  return (N + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS;
}

template <typename T, typename InputT, typename OutT>
__global__ void KernelBincount(const InputT* input,
                               const int total_elements,
                               const bool has_weights,
                               const T* weights,
                               OutT* output) {
  if (!has_weights) {
    for (int i = threadIdx.x; i < total_elements; i += blockDim.x) {
      paddle::platform::CudaAtomicAdd(&output[input[i]], 1L);
    }
  } else {
    for (int i = threadIdx.x; i < total_elements; i += blockDim.x) {
      paddle::platform::CudaAtomicAdd(&output[input[i]],
                                      static_cast<OutT>(weights[i]));
    }
  }
}

template <typename Context, typename T, typename InputT>
void BincountCUDAInner(const Context& dev_ctx,
                       const DenseTensor& x,
                       const paddle::optional<const DenseTensor&> weights,
                       int minlength,
                       DenseTensor* out) {
  const DenseTensor* input = &x;
  DenseTensor* output = out;
  const InputT* input_data = input->data<InputT>();

  const int input_numel = input->numel();

  if (input_data == nullptr) {
    phi::DDim out_dim{0};
    output->Resize(out_dim);
    dev_ctx.template Alloc<T>(output);
    return;
  }
  auto input_x = EigenVector<InputT>::Flatten(*input);
  DenseTensor input_min_t, input_max_t;
  input_max_t.Resize({1});
  auto* input_max_data = dev_ctx.template Alloc<InputT>(&input_max_t);
  input_min_t.Resize({1});
  auto* input_min_data = dev_ctx.template Alloc<InputT>(&input_min_t);

  auto input_max_scala = EigenScalar<InputT>::From(input_max_t);
  auto input_min_scala = EigenScalar<InputT>::From(input_min_t);

  auto* place = dev_ctx.eigen_device();
  input_max_scala.device(*place) = input_x.maximum();
  input_min_scala.device(*place) = input_x.minimum();

  DenseTensor input_min_cpu, input_max_cpu;
  paddle::framework::TensorCopySync(
      input_max_t, phi::CPUPlace(), &input_max_cpu);
  paddle::framework::TensorCopySync(
      input_min_t, phi::CPUPlace(), &input_min_cpu);

  InputT input_min = input_min_cpu.data<InputT>()[0];

  PADDLE_ENFORCE_GE(
      input_min,
      static_cast<InputT>(0),
      phi::errors::InvalidArgument(
          "The elements in input tensor must be non-negative ints"));

  int64_t output_size =
      static_cast<int64_t>(input_max_cpu.data<InputT>()[0]) + 1L;

  output_size = std::max(output_size, static_cast<int64_t>(minlength));
  phi::DDim out_dim{output_size};
  output->Resize(out_dim);

  bool has_weights = weights.is_initialized();

  const T* weights_data = has_weights ? weights->data<T>() : nullptr;
  auto stream = dev_ctx.stream();

  if (!has_weights) {
    int64_t* output_data = dev_ctx.template Alloc<int64_t>(output);
    phi::funcs::SetConstant<Context, int64_t>()(dev_ctx, output, 0L);

    KernelBincount<T, InputT, int64_t><<<GET_BLOCKS(input_numel),
                                         PADDLE_CUDA_NUM_THREADS,
                                         0,
                                         stream>>>(
        input_data, input_numel, has_weights, weights_data, output_data);
  } else {
    const auto& weights_type =
        paddle::framework::TransToProtoVarType(weights->dtype());

    if (weights->dtype() == DataType::FLOAT32) {
      float* output_data = dev_ctx.template Alloc<float>(output);
      phi::funcs::SetConstant<Context, float>()(
          dev_ctx, output, static_cast<float>(0));

      KernelBincount<T, InputT, float><<<GET_BLOCKS(input_numel),
                                         PADDLE_CUDA_NUM_THREADS,
                                         0,
                                         stream>>>(
          input_data, input_numel, has_weights, weights_data, output_data);
    } else {
      double* output_data = dev_ctx.template Alloc<double>(output);
      phi::funcs::SetConstant<Context, double>()(
          dev_ctx, output, static_cast<double>(0));
      KernelBincount<T, InputT, double><<<GET_BLOCKS(input_numel),
                                          PADDLE_CUDA_NUM_THREADS,
                                          0,
                                          stream>>>(
          input_data, input_numel, has_weights, weights_data, output_data);
    }
  }
}

template <typename T, typename Context>
void BincountKernel(const Context& dev_ctx,
                    const DenseTensor& x,
                    const paddle::optional<const DenseTensor&> weights,
                    int minlength,
                    DenseTensor* out) {
  if (x.dtype() == DataType::INT32) {
    BincountCUDAInner<Context, T, int>(dev_ctx, x, weights, minlength, out);
  } else if (x.dtype() == DataType::INT64) {
    BincountCUDAInner<Context, T, int64_t>(dev_ctx, x, weights, minlength, out);
  }
}
}  // namespace phi

PD_REGISTER_KERNEL(bincount,
                   GPU,
                   ALL_LAYOUT,
                   phi::BincountKernel,
                   float,
                   double,
                   int,
                   int64_t) {}