helper.py 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
16
from collections import defaultdict
17

18
from paddle.fluid.executor import global_scope
19 20 21 22
from paddle.fluid.framework import Parameter, program_guard
from paddle.jit import not_to_static, to_static
from paddle.jit.dy2static.program_translator import StaticFunction
from paddle.nn import Layer
23

24
from .converter import Converter
25
from .utils import get_logger, to_list
26 27 28 29 30 31 32 33 34 35


class ProxyLayer(Layer):
    """
    ProxyLayer implements all logic for converting dygraph model into
    static Program IR. Meanwhile, it provides conviential interfaces for
    auto parallel to visit feed/fetch/loss/metric variables.
    """

    def __init__(self, layer, loss_func, metrics):
36
        super().__init__()
37 38 39 40 41 42 43 44
        # NOTE: All verify logics are finished in Engine.Prepare
        self.inner_layer = layer
        self.loss_func = loss_func
        self.metrics = metrics
        # train / eval / predict
        self.mode = None

        # generated program vars
45 46 47 48 49
        self._input_vars = defaultdict(list)
        self._label_vars = defaultdict(list)
        self._output_vars = defaultdict(list)
        self._loss_vars = defaultdict(list)
        self._metric_vars = defaultdict(list)
50 51 52 53 54 55

    def _train(self, inputs, labels):
        """
        Train process of inner_layer with forward/loss/metric logic.
        """
        # step 1. save feed variables of Program
56 57 58
        mode = 'train'
        self._input_vars[mode] = inputs
        self._label_vars[mode] = labels
59 60

        # step 2. call inner_layer.forward
61
        self._output_vars[mode] = self.inner_layer(*inputs)
62 63 64

        # step 3. calculate loss if needed
        new_inputs = self._prepare(self.output_vars, labels)
65
        self._loss_vars[mode] = self.call_loss(new_inputs)
66 67

        # step 4. calculate metrics if needed
68
        self._metric_vars[mode] = self.call_metrics(new_inputs)
69 70 71 72 73 74 75 76 77

    def _eval(self, inputs, labels):
        """
        Evaluate process of inner_layer with forward/loss/metric logic.
        """
        # TODO(dev): we can reuse codes with self._train after making
        # sure if they can.

        # step 1. save feed variables of Program
78 79 80
        mode = 'eval'
        self._input_vars[mode] = inputs
        self._label_vars[mode] = labels
81 82

        # step 2. call inner_layer.forward
83
        self._output_vars[mode] = self.inner_layer(*inputs)
84 85 86

        # step 3. calculate loss if needed
        new_inputs = self._prepare(self.output_vars, labels)
87
        self._loss_vars[mode] = self.call_loss(new_inputs)
88 89

        # step 4. calculate metrics if needed
90
        self._metric_vars[mode] = self.call_metrics(new_inputs)
91

92
    def _predict(self, inputs, labels):
93 94 95 96
        """
        Predict process of inner_layer with forward logic.
        """
        # step 1. save feed variables of Program
97 98
        mode = 'predict'
        self._input_vars[mode] = inputs
99
        self._label_vars[mode] = labels
100 101

        # step 2. call inner_layer.forward
102
        self._output_vars[mode] = self.inner_layer(*inputs)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

    @not_to_static
    def _prepare(self, outputs, labels):
        """
        Concat outputs and labels as a single list

        NOTE(dev): We use @not_to_static to avoid AST Analysis.
        """
        return to_list(outputs) + to_list(labels)

    def call_loss(self, inputs):
        """
        Apply Loss Function on outputs and labels.

        Args:
            inputs: List[Variable]

        Returns: List[Variable]
        """
        res = []
        if self.loss_func is not None:
            res = self.loss_func(*inputs)
        return res

    def call_metrics(self, inputs):
        """
        Apply Metrics Function on outputs and labels.

        Args:
            inputs: List[Variable]

        Returns: List[Variable]
        """
        outs = []
        for metric in self.metrics:
138
            outs.append(to_list(metric.compute(*inputs)))
139 140 141 142 143 144 145

        return outs

    def set_mode(self, mode):
        self.mode = mode
        self.training = mode == 'train'

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    def clone(self):
        return ProxyLayer(self.inner_layer, self.loss_func, self.metrics)

    @property
    def input_vars(self):
        return self._input_vars[self.mode]

    @property
    def label_vars(self):
        return self._label_vars[self.mode]

    @property
    def output_vars(self):
        return self._output_vars[self.mode]

    @property
    def loss_vars(self):
        return self._loss_vars[self.mode]

    @property
    def metric_vars(self):
        return self._metric_vars[self.mode]

169 170 171 172
    @property
    def startup_program(self):
        return self.inner_layer._startup_program()

173 174

class BuildInfo:
175 176 177 178 179 180 181 182
    def __init__(self):
        self.clear()

    def has_cache(self, mode, update=False):
        is_cache = self.states[mode]
        if update:
            self.cache(mode)
        return is_cache
183

184 185 186 187 188
    def cache(self, mode):
        self.states[mode] = True

    def clear(self):
        self.states = defaultdict(bool)
189 190


191
class ProgramHelper:
192 193 194 195 196 197 198 199 200 201 202 203 204 205
    """
    A Helper class for Engine to provides different Program IR according specified 'mode'.
    """

    def __init__(self, layer, loss_func, metrics, inputs_spec, labels_spec):
        # original model config information
        # TODO(Aurelius84): Implenet append_backward and optimizer in ProxyLayer
        # after distribute engine satisify basic condition.
        self.proxy_layer = ProxyLayer(layer, loss_func, metrics)
        self.inputs_spec = inputs_spec
        self.labels_spec = labels_spec

        self.build_info = BuildInfo()
        self._logger = get_logger(logging.INFO)
206
        self.lazy_init = False
207

208 209 210 211 212 213 214
    def reset(self):
        """
        Reset all state of current Object.
        """
        self.build_info.clear()
        self.proxy_layer = self.proxy_layer.clone()

215 216 217 218 219
    def build_program(self, mode):
        """
        Convert dygraph model into static Program IR.
        """
        assert mode in ['train', 'eval', 'predict']
220
        self.proxy_layer.set_mode(mode)
221
        # skip if we has already built program.
222
        if self.build_info.has_cache(mode, True):
223
            self._logger.info(
224 225 226
                "Already build program with mode = %s, use cached program."
                % mode
            )
227 228 229
            return

        self._logger.info("start to build program for mode = %s." % mode)
230
        input_spec = [self.inputs_spec, self.labels_spec]
231 232 233 234 235 236 237 238 239
        static_func = to_static(self.static_func(), input_spec=input_spec)

        func_name = '_' + mode
        setattr(self.proxy_layer, func_name, static_func)

        # NOTE(dev): Because @to_static is a Lazy mechanism, so we explicitly call this to trigger
        # generating Program IR immediately.
        getattr(self.proxy_layer, func_name).concrete_program

240 241
        self._build_startup_program()

242 243 244 245
    def _build_startup_program(self):
        """
        Create and Sync parameters into startup program.
        """
246 247 248
        if len(self.startup_program.global_block().ops) > 1:
            self.lazy_init = True
            return
249
        for param in self.concrete_program.parameters:
250 251 252 253 254 255 256 257 258
            Parameter(
                name=param.name,
                desc=param,
                type=param.type,
                shape=param.shape,
                dtype=param.dtype,
                stop_gradient=param.stop_gradient,
                block=self.startup_program.global_block(),
            )
259

260 261 262 263 264
    def apply_optimizer(self, optimizer):
        """
        Append backward and generate optimizer operations.
        """
        self._verify_optimizer(optimizer)
265 266 267
        self._logger.info(
            "start to apply optimizer: %s ", type(optimizer).__name__
        )
268 269 270 271 272 273 274 275 276 277 278 279
        # clear optimizer parameters
        original_params = optimizer._parameter_list
        optimizer._parameter_list = None
        with program_guard(self.main_program, self.startup_program):
            res = optimizer.minimize(self.loss_vars[0])

        # restore optimizer parameters
        optimizer._parameter_list = original_params
        return res

    def _verify_optimizer(self, optimizer):
        assert optimizer is not None
280 281 282 283 284 285 286 287 288 289 290
        assert hasattr(
            optimizer, "minimize"
        ), "Optimizer must have minimize() method."
        assert self.proxy_layer.mode == 'train', (
            "Required mode == 'train', but received '%s'"
            % self.proxy_layer.mode
        )
        assert len(self.loss_vars) == 1, (
            "Required len(loss_vars) == 1, but received len(loss_vars) = %s"
            % len(self.loss_vars)
        )
291 292 293 294 295 296 297 298

    def to(self, mode):
        """
        Switch underly proxy layer mode into target mode.
        """
        assert mode in ['train', 'eval', 'predict']
        func = getattr(self.proxy_layer, '_' + mode)
        assert isinstance(
299 300
            func, StaticFunction
        ), "Please call build_program(mode) firstly."
301 302
        self.proxy_layer.set_mode(mode)

303 304
    def static_func(self):
        """
305
        Return StaticFunction instance with underly target mode.
306 307
        """
        assert self.proxy_layer.mode in [
308 309 310
            'train',
            'eval',
            'predict',
311 312 313 314
        ], "Please call build_program(mode) firstly."
        func_name = '_' + self.proxy_layer.mode
        return getattr(self.proxy_layer, func_name)

315 316 317 318 319 320 321 322 323 324 325 326
    def init(self, main_program, place, dist_context):
        if self.lazy_init:
            return
        for param in self.concrete_program.parameters:
            # create var in scope and share parameters to scope
            if param.name not in main_program.global_block().vars:
                continue
            # get param_var's dist_attr
            var = main_program.global_block().vars[param.name]
            var_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
            dist_attr = {
                "dims_mapping": var_dist_attr.dims_mapping,
327 328
                "process_shape": var_dist_attr.process_mesh.shape,
                "process_group": var_dist_attr.process_mesh.process_ids,
329 330 331 332 333
            }
            # slice param_value with dist_attr
            # share sliced_param_value with param_tensor in global_scope
            param_tensor = global_scope().var(param.name).get_tensor()
            sliced_param = Converter.slice_with_dist_attr(
334 335
                param.numpy(), dist_attr
            )
336 337
            param_tensor.set(sliced_param, place)

338 339 340 341 342 343 344 345 346 347
    @property
    def concrete_program(self):
        return self.static_func().concrete_program

    @property
    def main_program(self):
        return self.concrete_program.main_program

    @property
    def startup_program(self):
348 349 350
        try:
            return self.proxy_layer.startup_program
        except Exception as err:
351
            self._logger.warning("`lazy init` failed.")
352 353 354
            if isinstance(err, AssertionError):
                return self.concrete_program.startup_program
            raise err
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

    @property
    def input_vars(self):
        return to_list(self.proxy_layer.input_vars)

    @property
    def output_vars(self):
        return to_list(self.proxy_layer.output_vars)

    @property
    def label_vars(self):
        return to_list(self.proxy_layer.label_vars)

    @property
    def loss_vars(self):
        return to_list(self.proxy_layer.loss_vars)

    @property
    def metric_vars(self):
        return to_list(self.proxy_layer.metric_vars)