generate_mask_labels_op.cc 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <math.h>
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/bbox_util.h"
#include "paddle/fluid/operators/detection/mask_util.h"
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
const int kBoxDim = 4;

template <typename T>
void AppendMask(LoDTensor* out, int64_t offset, Tensor* to_add) {
  auto* out_data = out->data<T>();
  auto* to_add_data = to_add->data<T>();
  memcpy(out_data + offset, to_add_data, to_add->numel() * sizeof(T));
}

class GenerateMaskLabelsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("ImInfo"), "Input(ImInfo) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("GtClasses"),
                   "Input(GtClasses) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("IsCrowd"),
                   "Input(IsCrowd) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("GtSegms"),
                   "Input(GtSegms) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Rois"), "Input(Rois) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("LabelsInt32"),
                   "Input(LabelsInt32) shouldn't be null.");

    PADDLE_ENFORCE(
        ctx->HasOutput("MaskRois"),
        "Output(MaskRois) of GenerateMaskLabelsOp should not be null");
    PADDLE_ENFORCE(
        ctx->HasOutput("RoiHasMaskInt32"),
        "Output(RoiHasMaskInt32) of GenerateMaskLabelsOp should not be null");
    PADDLE_ENFORCE(
        ctx->HasOutput("MaskInt32"),
        "Output(MaskInt32) of GenerateMaskLabelsOp should not be null");

    auto im_info_dims = ctx->GetInputDim("ImInfo");
    auto gt_segms_dims = ctx->GetInputDim("GtSegms");
    PADDLE_ENFORCE_EQ(im_info_dims.size(), 2,
                      "The rank of Input(ImInfo) must be 2.");
    PADDLE_ENFORCE_EQ(gt_segms_dims.size(), 2,
                      "The rank of Input(GtSegms) must be 2.");
    PADDLE_ENFORCE_EQ(gt_segms_dims[1], 2,
                      "The second dim of Input(GtSegms) must be 2.");
    int num_classes = ctx->Attrs().Get<int>("num_classes");
    int resolution = ctx->Attrs().Get<int>("resolution");

    ctx->SetOutputDim("MaskRois", {-1, 4});
    ctx->SetOutputDim("RoiHasMaskInt32", {-1, 1});
    ctx->SetOutputDim("MaskInt32", {-1, num_classes * resolution * resolution});
78 79 80 81 82
    if (!ctx->IsRuntime()) {
      ctx->SetLoDLevel("MaskRois", ctx->GetLoDLevel("Rois"));
      ctx->SetLoDLevel("RoiHasMaskInt32", ctx->GetLoDLevel("Rois"));
      ctx->SetLoDLevel("MaskInt32", ctx->GetLoDLevel("Rois"));
    }
83 84 85 86 87
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
88
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Rois");
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    return framework::OpKernelType(data_type, platform::CPUPlace());
  }
};

/*
 * Expand masks from shape (#masks, M ** 2) to (#masks, #classes * M ** 2)
 * to encode class specific mask targets.
 */
template <typename T>
static inline void ExpandMaskTarget(const platform::CPUDeviceContext& ctx,
                                    const Tensor& masks,
                                    const Tensor& mask_class_labels,
                                    const int resolution, const int num_classes,
                                    Tensor* mask_targets) {
  const uint8_t* masks_data = masks.data<uint8_t>();
  int64_t num_mask = masks.dims()[0];
  const int* mask_class_labels_data = mask_class_labels.data<int>();
  const int M = resolution * resolution;
  const int mask_dim = M * num_classes;

  int* mask_targets_data =
      mask_targets->mutable_data<int>({num_mask, mask_dim}, ctx.GetPlace());
  math::set_constant(ctx, mask_targets, -1);
  for (int64_t mask_id = 0; mask_id < num_mask; ++mask_id) {
    int cls = mask_class_labels_data[mask_id];
    int start = M * cls;
    if (cls > 0) {
      for (int i = 0; i < M; ++i) {
        mask_targets_data[mask_id * mask_dim + start + i] =
            static_cast<int>(masks_data[mask_id * M + i]);
      }
    }
  }
}

template <typename T>
std::vector<Tensor> SampleMaskForOneImage(
    const platform::CPUDeviceContext& ctx, const Tensor& im_info,
    const Tensor& gt_classes, const Tensor& is_crowd, const Tensor& gt_segms,
    const Tensor& rois, const Tensor& label_int32, const int num_classes,
    const int resolution, const framework::LoD& segm_length) {
  // Prepare the mask targets by associating one gt mask to each training roi
  // that has a fg (non-bg) class label.
  const int64_t gt_size = static_cast<int64_t>(gt_classes.dims()[0]);
  const int64_t roi_size = static_cast<int64_t>(rois.dims()[0]);
  const int* gt_classes_data = gt_classes.data<int>();
  const int* is_crowd_data = is_crowd.data<int>();
  const int* label_int32_data = label_int32.data<int>();
  PADDLE_ENFORCE_EQ(roi_size, label_int32.dims()[0]);

  std::vector<int> mask_gt_inds, fg_inds;
  std::vector<std::vector<std::vector<T>>> gt_polys;

  auto polys_num = segm_length[1];
  auto segm_lod_offset = framework::ConvertToOffsetBasedLoD(segm_length);
  auto lod1 = segm_lod_offset[1];
  auto lod2 = segm_lod_offset[2];
  const T* polys_data = gt_segms.data<T>();
  for (int64_t i = 0; i < gt_size; ++i) {
    if ((gt_classes_data[i] > 0) && (is_crowd_data[i] == 0)) {
      mask_gt_inds.emplace_back(i);

      // slice fg segmentation polys
      int poly_num = polys_num[i];
      std::vector<std::vector<T>> polys;
      int s_idx = lod1[i];
      for (int j = 0; j < poly_num; ++j) {
        int s = lod2[s_idx + j];
        int e = lod2[s_idx + j + 1];
        PADDLE_ENFORCE_NE(s, e);
        std::vector<T> plts(polys_data + s * 2, polys_data + e * 2);
        polys.push_back(plts);
      }
      gt_polys.push_back(polys);
    }
  }
  for (int64_t i = 0; i < roi_size; ++i) {
    if (label_int32_data[i] > 0) {
      fg_inds.emplace_back(i);
    }
  }
  int gt_num = mask_gt_inds.size();
  int fg_num = fg_inds.size();

  Tensor boxes_from_polys;
  boxes_from_polys.mutable_data<T>({gt_num, 4}, platform::CPUPlace());
  Poly2Boxes(gt_polys, boxes_from_polys.data<T>());

  std::vector<int> roi_has_mask =
      std::vector<int>(fg_inds.begin(), fg_inds.end());
  Tensor mask_class_labels;
  Tensor masks;
  Tensor rois_fg;

  auto im_scale = im_info.data<T>()[2];
  if (fg_num > 0) {
    // Class labels for the foreground rois
    mask_class_labels.mutable_data<int>({fg_num, 1}, ctx.GetPlace());
    Gather<int>(label_int32_data, 1, fg_inds.data(), fg_inds.size(),
                mask_class_labels.data<int>());

    uint8_t* masks_data = masks.mutable_data<uint8_t>(
        {fg_num, resolution * resolution}, ctx.GetPlace());

    // Find overlap between all foreground rois and the bounding boxes
    // enclosing each segmentation
    T* rois_fg_data = rois_fg.mutable_data<T>({fg_num, 4}, ctx.GetPlace());
    Gather<T>(rois.data<T>(), 4, fg_inds.data(), fg_inds.size(),
              rois_fg.data<T>());

    for (int k = 0; k < rois_fg.numel(); ++k) {
      rois_fg_data[k] = rois_fg_data[k] / im_scale;
    }

    Tensor overlaps_bbfg_bbpolys;
    overlaps_bbfg_bbpolys.mutable_data<T>({fg_num, gt_num}, ctx.GetPlace());
    BboxOverlaps<T>(rois_fg, boxes_from_polys, &overlaps_bbfg_bbpolys);

    // Map from each fg rois to the index of the mask with highest overlap
    // (measured by bbox overlap)
    T* overlaps_bbfg_bbpolys_data = overlaps_bbfg_bbpolys.data<T>();
    std::vector<int> fg_masks_inds;
    for (int64_t i = 0; i < fg_num; ++i) {
      const T* v = overlaps_bbfg_bbpolys_data + i * gt_num;
      T max_overlap = std::numeric_limits<T>::min();
      int id = 0;
      for (int64_t j = 0; j < gt_num; ++j) {
        if (v[j] > max_overlap) {
          max_overlap = v[j];
          id = j;
        }
      }
      fg_masks_inds.push_back(id);
    }

    // add fg targets
    for (int64_t i = 0; i < fg_num; ++i) {
      int fg_polys_ind = fg_masks_inds[i];
      T* roi_fg = rois_fg_data + i * 4;
      uint8_t* mask = masks_data + i * resolution * resolution;
      Polys2MaskWrtBox(gt_polys[fg_polys_ind], roi_fg, resolution, mask);
    }
  } else {
    // The network cannot handle empty blobs, so we must provide a mask
    // We simply take the first bg roi, given it an all -1's mask (ignore
    // label), and label it with class zero (bg).
    int bg_num = 1;
    T* rois_fg_data = rois_fg.mutable_data<T>({bg_num, 4}, ctx.GetPlace());
    const T* rois_data = rois.data<T>();
    std::vector<int> bg_inds;
    for (int64_t i = 0; i < roi_size; ++i) {
      if (label_int32_data[i] == 0) {
        bg_inds.emplace_back(i);
        rois_fg_data[0] = rois_data[0] / im_scale;
        rois_fg_data[1] = rois_data[1] / im_scale;
        rois_fg_data[2] = rois_data[2] / im_scale;
        rois_fg_data[3] = rois_data[3] / im_scale;
        break;
      }
    }
    masks.mutable_data<uint8_t>({bg_num, resolution * resolution},
                                ctx.GetPlace());
    math::set_constant(ctx, &masks, -1);
    int* mask_class_labels_data =
        mask_class_labels.mutable_data<int>({bg_num, 1}, ctx.GetPlace());
    mask_class_labels_data[0] = 0;
    roi_has_mask = std::vector<int>(bg_inds.begin(), bg_inds.end());
  }

  Tensor masks_expand;
  ExpandMaskTarget<T>(ctx, masks, mask_class_labels, resolution, num_classes,
                      &masks_expand);

  T* rois_fg_data = rois_fg.data<T>();
  for (int k = 0; k < rois_fg.numel(); ++k) {
    rois_fg_data[k] = rois_fg_data[k] * im_scale;
  }

  Tensor roi_has_mask_t;
  int roi_has_mask_size = roi_has_mask.size();
  int* roi_has_mask_data =
      roi_has_mask_t.mutable_data<int>({roi_has_mask_size, 1}, ctx.GetPlace());
  std::copy(roi_has_mask.begin(), roi_has_mask.end(), roi_has_mask_data);

  std::vector<Tensor> res;
  res.emplace_back(rois_fg);
  res.emplace_back(roi_has_mask_t);
  res.emplace_back(masks_expand);
  return res;
}

template <typename T>
class GenerateMaskLabelsKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* im_info = ctx.Input<LoDTensor>("ImInfo");
    auto* gt_classes = ctx.Input<LoDTensor>("GtClasses");
    auto* is_crowd = ctx.Input<LoDTensor>("IsCrowd");
    auto* gt_segms = ctx.Input<LoDTensor>("GtSegms");
    auto* rois = ctx.Input<LoDTensor>("Rois");
    auto* label_int32 = ctx.Input<LoDTensor>("LabelsInt32");

    auto* mask_rois = ctx.Output<LoDTensor>("MaskRois");
    auto* roi_has_mask_int32 = ctx.Output<LoDTensor>("RoiHasMaskInt32");
    auto* mask_int32 = ctx.Output<LoDTensor>("MaskInt32");

    int num_classes = ctx.Attr<int>("num_classes");
    int resolution = ctx.Attr<int>("resolution");

    PADDLE_ENFORCE_EQ(gt_classes->lod().size(), 1UL,
                      "GenerateMaskLabelsOp gt_classes needs 1 level of LoD");
    PADDLE_ENFORCE_EQ(is_crowd->lod().size(), 1UL,
                      "GenerateMaskLabelsOp is_crowd needs 1 level of LoD");
    PADDLE_ENFORCE_EQ(rois->lod().size(), 1UL,
                      "GenerateMaskLabelsOp rois needs 1 level of LoD");
    PADDLE_ENFORCE_EQ(label_int32->lod().size(), 1UL,
                      "GenerateMaskLabelsOp label_int32 needs 1 level of LoD");

    PADDLE_ENFORCE_EQ(gt_segms->lod().size(), 3UL);

    int64_t n = static_cast<int64_t>(gt_classes->lod().back().size() - 1);
    PADDLE_ENFORCE_EQ(gt_segms->lod()[0].size() - 1, n);

    int mask_dim = num_classes * resolution * resolution;
313 314 315 316
    int roi_num = rois->lod().back()[n];
    mask_rois->mutable_data<T>({roi_num, kBoxDim}, ctx.GetPlace());
    roi_has_mask_int32->mutable_data<int>({roi_num, 1}, ctx.GetPlace());
    mask_int32->mutable_data<int>({roi_num, mask_dim}, ctx.GetPlace());
317 318 319 320 321 322 323 324 325 326 327 328 329 330

    framework::LoD lod;
    std::vector<size_t> lod0(1, 0);

    int64_t num_mask = 0;
    auto& dev_ctx = ctx.device_context<platform::CPUDeviceContext>();

    auto gt_classes_lod = gt_classes->lod().back();
    auto is_crowd_lod = is_crowd->lod().back();
    auto rois_lod = rois->lod().back();
    auto label_int32_lod = label_int32->lod().back();
    auto gt_segms_lod = gt_segms->lod();

    for (int i = 0; i < n; ++i) {
331 332 333 334
      if (rois_lod[i] == rois_lod[i + 1]) {
        lod0.emplace_back(num_mask);
        continue;
      }
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
      Tensor im_info_slice = im_info->Slice(i, i + 1);
      Tensor gt_classes_slice =
          gt_classes->Slice(gt_classes_lod[i], gt_classes_lod[i + 1]);
      Tensor is_crowd_slice =
          is_crowd->Slice(is_crowd_lod[i], is_crowd_lod[i + 1]);
      Tensor label_int32_slice =
          label_int32->Slice(label_int32_lod[i], label_int32_lod[i + 1]);
      Tensor rois_slice = rois->Slice(rois_lod[i], rois_lod[i + 1]);

      auto sub_lod_and_offset =
          framework::GetSubLoDAndAbsoluteOffset(gt_segms_lod, i, i + 1, 0);
      auto lod_length = sub_lod_and_offset.first;
      size_t s = sub_lod_and_offset.second.first;
      size_t e = sub_lod_and_offset.second.second;
      Tensor gt_segms_slice = gt_segms->Slice(s, e);

      std::vector<Tensor> tensor_output = SampleMaskForOneImage<T>(
          dev_ctx, im_info_slice, gt_classes_slice, is_crowd_slice,
          gt_segms_slice, rois_slice, label_int32_slice, num_classes,
          resolution, lod_length);

      Tensor sampled_mask_rois = tensor_output[0];
      Tensor sampled_roi_has_mask_int32 = tensor_output[1];
      Tensor sampled_mask_int32 = tensor_output[2];

      AppendMask<T>(mask_rois, kBoxDim * num_mask, &sampled_mask_rois);
      AppendMask<int>(roi_has_mask_int32, num_mask,
                      &sampled_roi_has_mask_int32);
      AppendMask<int>(mask_int32, mask_dim * num_mask, &sampled_mask_int32);

      num_mask += sampled_mask_rois.dims()[0];
      lod0.emplace_back(num_mask);
    }

    lod.emplace_back(lod0);
    mask_rois->set_lod(lod);
    roi_has_mask_int32->set_lod(lod);
    mask_int32->set_lod(lod);
    mask_rois->Resize({num_mask, kBoxDim});
    roi_has_mask_int32->Resize({num_mask, 1});
    mask_int32->Resize({num_mask, mask_dim});
  }
};

class GenerateMaskLabelsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("ImInfo",
             "(Tensor), This input is a 2D Tensor with shape [B, 3]. "
             "B is the number of input images, "
             "each element consists of im_height, im_width, im_scale.");
    AddInput("GtClasses",
             "(LoDTensor), This input is a 2D LoDTensor with shape [M, 1]. "
             "M is the number of groundtruth, "
             "each element is a class label of groundtruth.");
    AddInput(
        "IsCrowd",
        "(LoDTensor), This input is a 2D LoDTensor with shape [M, 1]. "
        "M is the number of groundtruth, "
        "each element is a flag indicates whether a groundtruth is crowd.");
    AddInput(
        "GtSegms",
        "(LoDTensor), This input is a 2D LoDTensor with shape [S, 2], it's LoD "
        "level is 3. The LoD[0] represents the gt objects number of each "
        "instance. LoD[1] represents the segmentation counts of each objects. "
        "LoD[2] represents the polygons number of each segmentation. S the "
        "total number of polygons coordinate points. Each element is (x, y) "
        "coordinate points.");
    AddInput(
        "Rois",
        "(LoDTensor), This input is a 2D LoDTensor with shape [R, 4]. "
        "R is the number of rois which is the output of "
        "generate_proposal_labels, "
        "each element is a bounding box with (xmin, ymin, xmax, ymax) format.");
    AddInput("LabelsInt32",
             "(LoDTensor), This intput is a 2D LoDTensor with shape [R, 1], "
T
tianshuo78520a 已提交
411
             "each element represents a class label of a roi");
412 413 414 415 416 417 418
    AddOutput(
        "MaskRois",
        "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4]. "
        "P is the number of mask, "
        "each element is a bounding box with [xmin, ymin, xmax, ymax] format.");
    AddOutput("RoiHasMaskInt32",
              "(LoDTensor), This output is a 2D LoDTensor with shape [P, 1], "
T
tianshuo78520a 已提交
419
              "each element represents the output mask rois index with regard "
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
              "to input rois");
    AddOutput("MaskInt32",
              "(LoDTensor), This output is a 4D LoDTensor with shape [P, Q], "
              "Q equal to num_classes * resolution * resolution");

    AddAttr<int>("num_classes", "Class number.");
    AddAttr<int>("resolution", "Resolution of mask.");

    AddComment(R"DOC(
This operator can be, for given the RoIs and corresponding labels,
to sample foreground RoIs. This mask branch also has
a :math: `K \\times M^{2}` dimensional output targets for each foreground
RoI, which encodes K binary masks of resolution M x M, one for each of the
K classes. This mask targets are used to compute loss of mask branch.
    )DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
442 443 444 445 446
REGISTER_OPERATOR(
    generate_mask_labels, ops::GenerateMaskLabelsOp,
    ops::GenerateMaskLabelsOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
447 448
REGISTER_OP_CPU_KERNEL(generate_mask_labels,
                       ops::GenerateMaskLabelsKernel<float>);