test_ppyolo_mbv3.cc 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "test_suite.h"  // NOLINT

DEFINE_string(modeldir, "", "Directory of the inference model.");

namespace paddle_infer {

std::map<std::string, paddle::test::Record> PrepareInput(int batch_size) {
  // init input data
  int channel = 3;
  int width = 320;
  int height = 320;
  paddle::test::Record image, im_shape, scale_factor;
  int input_num = batch_size * channel * width * height;
  int shape_num = batch_size * 2;
  std::vector<float> image_data(input_num, 1);
  for (int i = 1; i < input_num + 1; ++i) {
    image_data[i] = i % 10 * 0.5;
  }
  std::vector<float> im_shape_data(shape_num, 1);
  std::vector<float> scale_factor_data(shape_num, 1);

  image.data = std::vector<float>(image_data.begin(), image_data.end());
  image.shape = std::vector<int>{batch_size, channel, width, height};
  image.type = paddle::PaddleDType::FLOAT32;

  im_shape.data =
      std::vector<float>(im_shape_data.begin(), im_shape_data.end());
  im_shape.shape = std::vector<int>{batch_size, 2};
  im_shape.type = paddle::PaddleDType::FLOAT32;

  scale_factor.data =
      std::vector<float>(scale_factor_data.begin(), scale_factor_data.end());
  scale_factor.shape = std::vector<int>{batch_size, 2};
  scale_factor.type = paddle::PaddleDType::FLOAT32;

  std::map<std::string, paddle::test::Record> input_data_map;
  input_data_map.insert({"image", image});
  input_data_map.insert({"im_shape", im_shape});
  input_data_map.insert({"scale_factor", scale_factor});

  return input_data_map;
}

TEST(test_ppyolo_mbv3, multi_thread4_trt_fp32_bz2) {
  int thread_num = 4;
  // init input data
  auto input_data_map = PrepareInput(2);
  // init output data
  std::map<std::string, paddle::test::Record> infer_output_data,
      truth_output_data;
  // prepare groudtruth config
  paddle_infer::Config config, config_no_ir;
  config_no_ir.SetModel(FLAGS_modeldir + "/model.pdmodel",
                        FLAGS_modeldir + "/model.pdiparams");
  config_no_ir.EnableUseGpu(100, 0);
  config_no_ir.SwitchIrOptim(false);
  // prepare inference config
  config.SetModel(FLAGS_modeldir + "/model.pdmodel",
                  FLAGS_modeldir + "/model.pdiparams");
  config.EnableUseGpu(100, 0);
  config.EnableTensorRtEngine(
      1 << 20, 2, 3, paddle_infer::PrecisionType::kFloat32, false, false);
  LOG(INFO) << config.Summary();
  // get groudtruth by disbale ir
  paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1);
  SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &input_data_map,
                         &truth_output_data, 1);

  // get infer results from multi threads
  std::vector<std::thread> threads;
  services::PredictorPool pred_pool(config, thread_num);
  for (int i = 0; i < thread_num; ++i) {
    threads.emplace_back(paddle::test::SingleThreadPrediction,
                         pred_pool.Retrive(i), &input_data_map,
                         &infer_output_data, 2);
  }

  // thread join & check outputs
  for (int i = 0; i < thread_num; ++i) {
    LOG(INFO) << "join tid : " << i;
    threads[i].join();
    CompareRecord(&truth_output_data, &infer_output_data, 1e-2);
    // TODO(OliverLPH): precision set to 1e-2 since input is fake, change to
    // real input later
  }

  std::cout << "finish multi-thread test" << std::endl;
}

TEST(DISABLED_test_ppyolo_mbv3, multi_thread4_mkl_bz2) {
  // TODO(OliverLPH): mkldnn multi thread will fail
  int thread_num = 4;
  // init input data
  auto input_data_map = PrepareInput(2);
  // init output data
  std::map<std::string, paddle::test::Record> infer_output_data,
      truth_output_data;
  // prepare groudtruth config
  paddle_infer::Config config, config_no_ir;
  config_no_ir.SetModel(FLAGS_modeldir + "/model.pdmodel",
                        FLAGS_modeldir + "/model.pdiparams");
  config_no_ir.DisableGpu();
  config_no_ir.SwitchIrOptim(false);
  // prepare inference config
  config.SetModel(FLAGS_modeldir + "/model.pdmodel",
                  FLAGS_modeldir + "/model.pdiparams");
  config.DisableGpu();
  config.EnableMKLDNN();
  config.SetMkldnnCacheCapacity(10);
  config.SetCpuMathLibraryNumThreads(10);
  LOG(INFO) << config.Summary();
  // get groudtruth by disbale ir
  paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1);
  SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &input_data_map,
                         &truth_output_data, 1);

  // get infer results from multi threads
  std::vector<std::thread> threads;
  services::PredictorPool pred_pool(config, thread_num);
  for (int i = 0; i < thread_num; ++i) {
    threads.emplace_back(paddle::test::SingleThreadPrediction,
                         pred_pool.Retrive(i), &input_data_map,
                         &infer_output_data, 2);
  }

  // thread join & check outputs
  for (int i = 0; i < thread_num; ++i) {
    LOG(INFO) << "join tid : " << i;
    threads[i].join();
    CompareRecord(&truth_output_data, &infer_output_data, 1e-4);
  }

  std::cout << "finish multi-thread test" << std::endl;
}

}  // namespace paddle_infer

int main(int argc, char** argv) {
  ::testing::InitGoogleTest(&argc, argv);
  ::google::ParseCommandLineFlags(&argc, &argv, true);
  return RUN_ALL_TESTS();
}