reduce_grad_functions.h 6.4 KB
Newer Older
C
chentianyu03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
21
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
C
chentianyu03 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
namespace phi {

namespace funcs {

// This ReduceGradFunctor is only the CPU implement.
template <typename Context, typename T, size_t D, typename Functor>
void ReduceGradFunctor(const Context& dev_ctx,
                       const DenseTensor& input0,
                       const DenseTensor& input1,
                       const DenseTensor& input2,
                       DenseTensor* output,
                       Functor functor,
                       const std::vector<int>& dims) {
  auto x = phi::EigenTensor<T, D>::From(input0);
  auto x_grad = phi::EigenTensor<T, D>::From(*output);
  auto x_rank = static_cast<int>(x.dimensions().size());
  auto x_dims = input0.dims();
  auto reduced_dims_v = phi::vectorize(x_dims);
  std::vector<int> dims_ref = dims;
  Eigen::array<int, D> broadcast_dim;
  for (size_t i = 0; i < D; ++i) broadcast_dim[i] = 1;

44
  int broad_cast_times = 1;
C
chentianyu03 已提交
45 46 47 48 49 50
  for (size_t i = 0; i < dims_ref.size(); ++i) {
    if (dims_ref[i] < 0) {
      dims_ref[i] = x_rank + dims_ref[i];
    }
    reduced_dims_v[dims_ref[i]] = 1;
    broadcast_dim[dims_ref[i]] = x_dims[dims_ref[i]];
51
    broad_cast_times *= x_dims[dims_ref[i]];
C
chentianyu03 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64
  }
  auto reduced_dims = phi::make_ddim(reduced_dims_v);
  auto x_reduce = EigenTensor<T, D>::From(input1, reduced_dims);
  auto x_reduce_grad = EigenTensor<T, D>::From(input2, reduced_dims);

  auto& place = *dev_ctx.eigen_device();

  functor(place,
          &x,
          &x_reduce,
          &x_grad,
          &x_reduce_grad,
          broadcast_dim,
65
          broad_cast_times);
C
chentianyu03 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
}

inline void GetOriginDimFromShuffled(const DDim& src_dim,
                                     const std::vector<int>& dims,
                                     std::vector<int>* origin_dim) {
  DDim shuffled_dims(src_dim);
  size_t n = src_dim.size();
  std::vector<int> perm_axis(n);
  std::vector<int64_t> dims_64{dims.begin(), dims.end()};
  GetShuffledDim(src_dim, &shuffled_dims, dims_64, &perm_axis);
  for (size_t i = 0; i < n; ++i) {
    (*origin_dim)[perm_axis[i]] = i;
  }
}

template <typename Context, typename T, typename Functor>
void HandleLargeDimGrad(const Context& dev_ctx,
                        const DenseTensor* x,
                        const DenseTensor* out,
                        const DenseTensor* dout,
                        DenseTensor* dx,
                        Functor functor,
                        const std::vector<int>& dims) {
  const int64_t unreduced = out->numel();
  const int64_t reduced = x->numel() / unreduced;
  DDim out_dim(out->dims());
  DDim x_dim(x->dims());
  // transpose and reshape X
  DenseTensor shuffled_x;
  std::vector<int64_t> dims_64{dims.begin(), dims.end()};
  GetShuffledInput<Context, T>(dev_ctx, *x, &shuffled_x, dims_64);
  DDim shuffled_dim = shuffled_x.dims();
  shuffled_x.Resize({unreduced, reduced});
  // reshape dX {unreduced, reduced}
  dx->Resize({unreduced, reduced});
  ReduceGradFunctor<Context, T, 2, Functor>(
      dev_ctx, shuffled_x, *out, *dout, dx, functor, {1});
  // transpose dX
  std::vector<int> origin_axis(x_dim.size());
  GetOriginDimFromShuffled(x_dim, dims, &origin_axis);
  DenseTensor dx_tmp;
  paddle::framework::TensorCopy(*dx, dev_ctx.GetPlace(), &dx_tmp);
  dx_tmp.Resize(shuffled_dim);
  dx->Resize(x_dim);
  phi::funcs::TransposeNormal<Context, T> trans;
  trans(dev_ctx, dx_tmp, dx, origin_axis);
}

// Only for CPU
template <typename Context, typename T, typename Functor>
void LaunchReduceGradKernel(const Context& dev_ctx,
                            const DenseTensor* input0,
                            const DenseTensor* input1,
                            const DenseTensor* input2,
                            DenseTensor* output,
                            Functor functor,
                            const std::vector<int>& dims,
                            bool reduce_all = false) {
  if (reduce_all) {
    auto x = phi::EigenVector<T>::Flatten(*input0);
    auto x_reduce = phi::EigenVector<T>::Flatten(*input1);
    auto x_reduce_grad = phi::EigenVector<T>::Flatten(*input2);
    auto x_grad = phi::EigenVector<T>::Flatten(*output);
    auto& place = *dev_ctx.eigen_device();
    // *dev_ctx.eigen_device();
    auto broadcast_dim =
        Eigen::array<int, 1>({{static_cast<int>(input0->numel())}});
    functor(place,
            &x,
            &x_reduce,
            &x_grad,
            &x_reduce_grad,
            broadcast_dim,
            broadcast_dim[0]);
  } else {
    int rank = input0->dims().size();
    switch (rank) {
      case 1:
        ReduceGradFunctor<Context, T, 1, Functor>(
            dev_ctx, *input0, *input1, *input2, output, functor, dims);
        break;
      case 2:
        ReduceGradFunctor<Context, T, 2, Functor>(
            dev_ctx, *input0, *input1, *input2, output, functor, dims);
        break;
      case 3:
        ReduceGradFunctor<Context, T, 3, Functor>(
            dev_ctx, *input0, *input1, *input2, output, functor, dims);
        break;
      case 4:
        ReduceGradFunctor<Context, T, 4, Functor>(
            dev_ctx, *input0, *input1, *input2, output, functor, dims);
        break;
      case 5:
        ReduceGradFunctor<Context, T, 5, Functor>(
            dev_ctx, *input0, *input1, *input2, output, functor, dims);
        break;
      case 6:
        ReduceGradFunctor<Context, T, 6, Functor>(
            dev_ctx, *input0, *input1, *input2, output, functor, dims);
        break;
      default:
        HandleLargeDimGrad<Context, T, Functor>(
            dev_ctx, input0, input1, input2, output, functor, dims);
        break;
    }
  }
}

}  // namespace funcs

}  // namespace phi