math_function_impl.h 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#pragma once
16 17 18 19 20 21 22 23 24 25 26
#include "paddle/framework/data_type.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {
namespace math {

template <typename Place, typename T>
void SetConstant<Place, T>::operator()(const platform::DeviceContext& context,
                                       framework::Tensor* tensor, T num) {
  auto t = framework::EigenVector<T>::Flatten(*tensor);
D
dangqingqing 已提交
27
  t.device(*context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(num));
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
}

template <typename Place, typename T, int Rank>
void Transpose<Place, T, Rank>::operator()(
    const platform::DeviceContext& context, const framework::Tensor& in,
    framework::Tensor* out, const std::vector<int>& axis) {
  Eigen::array<int, Rank> permute;
  for (int i = 0; i < Rank; i++) {
    permute[i] = axis[i];
  }
  auto in_dim = in.dims();
  auto out_dim = out->dims();

  auto eigen_in = framework::EigenTensor<T, Rank>::From(in);
  auto eigen_out = framework::EigenTensor<T, Rank>::From(*out);
  auto* dev = context.GetEigenDevice<Place>();
  eigen_out.device(*dev) = eigen_in.shuffle(permute);
}
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

template <typename Place, typename T>
void RowwiseAdd<Place, T>::operator()(const platform::DeviceContext& context,
                                      const framework::Tensor& input,
                                      const framework::Tensor& vector,
                                      framework::Tensor* output) {
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector.numel(), size);
  PADDLE_ENFORCE_EQ(output->dims(), in_dims);

  auto in = framework::EigenMatrix<T>::From(input);
  auto vec = framework::EigenMatrix<T>::From(vector);
  auto out = framework::EigenMatrix<T>::From(*output);
  Eigen::array<int, 2> shape({{1, static_cast<int>(size)}});
  Eigen::array<int, 2> bcast({{static_cast<int>(in_dims[0]), 1}});
  out.device(*context.GetEigenDevice<Place>()) =
      in + vec.reshape(shape).broadcast(bcast);
64
}
65 66 67 68 69 70 71 72 73 74 75 76 77 78

template <typename Place, typename T>
void ColwiseSum<Place, T>::operator()(const platform::DeviceContext& context,
                                      const framework::Tensor& input,
                                      framework::Tensor* vector) {
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector->numel(), size);

  auto vec = framework::EigenMatrix<T>::From(*vector);
  auto in = framework::EigenMatrix<T>::From(input);
  Eigen::array<int, 2> shape({{1, static_cast<int>(size)}});
  vec.reshape(shape).device(*context.GetEigenDevice<Place>()) =
      in.sum(Eigen::array<int, 1>({{0}})).reshape(shape);
79
}
80

Y
Yancey1989 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94
template <typename Place, typename T>
void RowwiseSum<Place, T>::operator()(const platform::DeviceContext& context,
                                      const framework::Tensor& input,
                                      framework::Tensor* vector) {
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[1];
  PADDLE_ENFORCE_EQ(vector->numel(), size);

  auto in = framework::EigenMatrix<T>::From(input);
  auto vec = framework::EigenMatrix<T>::From(*vector);
  Eigen::array<int, 2> shape({{static_cast<int>(size), 1}});
  vec.reshape(shape).device(*context.GetEigenDevice<Place>()) =
      in.sum(Eigen::array<int, 1>({{0}})).reshape(shape);
}
95 96 97
}  // namespace math
}  // namespace operators
}  // namespace paddle