concat_op_xpu.cc 7.6 KB
Newer Older
L
liuyuhui 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14
#ifdef PADDLE_WITH_XPU
L
liuyuhui 已提交
15 16 17 18
#include "paddle/fluid/operators/concat_op.h"
#include <memory>
#include <string>
#include <vector>
Q
QingshuChen 已提交
19
#include "paddle/fluid/platform/xpu/xpu_header.h"
L
liuyuhui 已提交
20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class ConcatXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
29 30
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
    framework::LoDTensor* out = ctx.Output<framework::LoDTensor>("Out");
L
liuyuhui 已提交
31 32 33 34 35 36 37 38
    int axis = ctx.Attr<int>("axis");
    PADDLE_ENFORCE_NE(ins[0], nullptr, platform::errors::InvalidArgument(
                                           "The input should not be null."));
    PADDLE_ENFORCE_NE(ctx.HasInput("AxisTensor"), true,
                      platform::errors::InvalidArgument(
                          "XPU donot surpport AxisTensor for now"));
    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));
39 40 41 42
    PADDLE_ENFORCE_GE(axis, 0, platform::errors::InvalidArgument(
                                   "concat: axis should be larger than or "
                                   "equal to 0, but received axis is %d.",
                                   axis));
L
liuyuhui 已提交
43 44
    PADDLE_ENFORCE_LT(axis, ins[0]->dims().size(),
                      platform::errors::InvalidArgument(
45 46 47 48
                          "concat: axis should be less than ins[0]->dims()!"
                          "But received axis is %d, while ins[0]->dims()"
                          "size is %d.",
                          axis, ins[0]->dims().size()));
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

    // If axis is 0, the lod of the output is not the same as inputs.
    if (axis == 0 && ins[0]->lod().size() > 0) {
      size_t lod_size_0 = ins[0]->lod().size();
      size_t lod_size = lod_size_0;
      for (size_t i = 1; i < ins.size(); ++i) {
        if (ins[i]->lod().size() > 0) {
          PADDLE_ENFORCE_EQ(
              ins[i]->lod().size(), lod_size_0,
              platform::errors::Unimplemented(
                  "The lod level of all input LoDTensors should be same. "
                  "Maybe different lod level of input LoDTensors can concat,"
                  "it is not supported currently. The lod level of %dth input "
                  "is %d and first input is %d.",
                  i, ins[i]->lod().size(), lod_size_0));
        } else {
          lod_size = 0;
          break;
        }
L
liuyuhui 已提交
68
      }
69 70 71 72 73 74
      if (lod_size) {
        auto* out_lod = out->mutable_lod();
        for (size_t i = 1; i < ins.size(); ++i) {
          auto in_lod = ConvertToLengthBasedLoD(ins[i]->lod());
          AppendLoD(out_lod, in_lod);
        }
L
liuyuhui 已提交
75 76
      }
    }
77 78 79 80 81 82 83 84 85 86 87 88 89
    auto place = ctx.GetPlace();
    out->mutable_data<T>(place);
    std::vector<std::vector<int>> xdims_list;
    std::vector<const T*> ptrs;
    for (unsigned int i = 0; i < ins.size(); ++i) {
      if (ins[i] && ins[i]->numel() > 0) {
        ptrs.push_back(ins[i]->data<T>());
        int size = ins[i]->dims().size();
        std::vector<int> tmp_dims(size);
        for (int j = 0; j < size; ++j) {
          tmp_dims[j] = ins[i]->dims()[j];
        }
        xdims_list.push_back(tmp_dims);
90 91 92
      }
    }

93 94
    PADDLE_ENFORCE_GT(xdims_list.size(), 0, platform::errors::InvalidArgument(
                                                "No tensor need concat"));
L
liuyuhui 已提交
95
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
96

97 98
    int r = xpu::concat<T>(dev_ctx.x_context(), ptrs, out->data<T>(),
                           xdims_list, axis);
99 100 101 102
    PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
                      platform::errors::External(
                          "XPU concat kernel return wrong value[%d %s]", r,
                          XPUAPIErrorMsg[r]));
L
liuyuhui 已提交
103 104
  }
};
105

L
liuyuhui 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
template <typename DeviceContext, typename T>
class ConcatGradXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
    auto out_var_names = ctx.OutputNames(framework::GradVarName("X"));
    auto outs =
        ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));
    {
      auto dx = outs;
      auto x = ins;
      for (size_t i = 0; i < dx.size(); ++i) {
        if (dx[i] != nullptr) {
          dx[i]->set_lod(x[i]->lod());
        }
      }
    }
    PADDLE_ENFORCE_NE(ins[0], nullptr, platform::errors::InvalidArgument(
                                           "The input should not be null."));
    auto axis = ctx.Attr<int>("axis");
    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<framework::Tensor>("AxisTensor");
      axis = GetDataFromTensor<int>(axis_tensor)[0];
    }
    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));
    // get output tensor that the name is not kEmptyVarName
T
TTerror 已提交
135
    std::vector<T*> ptrs(outs.size());
L
liuyuhui 已提交
136 137 138 139
    for (size_t j = 0; j < outs.size(); ++j) {
      if (out_var_names[j] != framework::kEmptyVarName &&
          outs[j]->numel() != 0UL) {
        outs[j]->mutable_data<T>(ctx.GetPlace());
T
TTerror 已提交
140 141 142
        ptrs[j] = outs[j]->data<T>();
      } else {
        ptrs[j] = nullptr;
L
liuyuhui 已提交
143 144 145
      }
    }
    PADDLE_ENFORCE_GE(axis, 0, platform::errors::InvalidArgument(
146 147 148 149 150 151 152 153 154 155
                                   "concat_grad: axis should be larger than or "
                                   "equal to 0, but received axis is %d.",
                                   axis));
    PADDLE_ENFORCE_LT(
        axis, out_grad->dims().size(),
        platform::errors::InvalidArgument(
            "concat_grad: axis should be less than ins[0]->dims()!"
            "But received axis is %d, while ins[0]->dims()"
            "size is %d.",
            axis, out_grad->dims().size()));
156 157

    auto input_dims = ins[0]->dims();
T
TTerror 已提交
158
    std::vector<int> split_list(ins.size());
159 160
    std::vector<int> xdims_list(input_dims.size());
    int total_length = 0;
T
TTerror 已提交
161
    for (size_t i = 0; i < ins.size(); ++i) {
162 163 164 165 166 167 168 169 170 171 172 173 174 175
      split_list[i] = ins[i]->dims()[axis];
      total_length += ins[i]->dims()[axis];
    }
    for (int i = 0; i < input_dims.size(); ++i) {
      if (i == axis) {
        continue;
      }
      xdims_list[i] = input_dims[i];
    }
    xdims_list[axis] = total_length;

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    int r = xpu::split<T>(dev_ctx.x_context(), out_grad->data<T>(), ptrs,
                          xdims_list, split_list, axis);
L
liuyuhui 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External(
            "XPU API return wrong value[%d], please check whether "
            "Baidu Kunlun Card is properly installed.",
            r));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
    concat, ops::ConcatXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
    concat_grad,
    ops::ConcatGradXPUKernel<paddle::platform::XPUDeviceContext, float>);

#endif