functional.py 23.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
import typing

import paddle
from paddle.fluid import framework
from paddle.incubate.autograd import primapi, utils


def vjp(func, xs, v=None):
    r"""Computes the Vector-Jacobian product, a functional form of
    reverse mode automatic differentiation.

    Warning:
        This API is in beta, the signatures could be changed in future version.

    Args:
        func(Callable): A function that takes ``xs`` as inputs parameter and
            returns a sequence of Tensors or a Tensor.
        xs(Tensor|Sequence[Tensor]): Used as positional arguments to evaluate
            ``func``. ``xs`` is accepted as one Tensor or a sequence of Tensors.
        v(Tensor|Sequence[Tensor]|None, optional): The cotangent vector invovled
            in the VJP computation. ``v`` matches the size and shape of
            ``func`` 's output. Defaults to None, which is equivalent to all
            ones the same size of ``func`` 's output.

    Returns:
        output(tuple):
        
            - func_out(Tensor|tuple[Tensor]): The output of ``func(xs)`` .
            - vjp(Tensor|tuple[Tensor]): The vjp result.

    Examples:

        .. code-block:: python

            import paddle

            def func(x):
                return paddle.matmul(x, x)

            x = paddle.ones(shape=[2, 2], dtype='float32')
            _, vjp_result = paddle.incubate.autograd.vjp(func, x)
            print(vjp_result)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[4., 4.],
            #         [4., 4.]])

            v = paddle.to_tensor([[1.0, 0.0], [0.0, 0.0]])
            _, vjp_result = paddle.incubate.autograd.vjp(func, x, v)
            print(vjp_result)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[2., 1.],
            #         [1., 0.]])
    """
    _check_inputs(func, xs, v)

    # ``_seprate`` breaks the dependencies between ``xs`` and other
    # variables. See more ``_seprate`` .
    if paddle.fluid._non_static_mode() or not utils.prim_enabled():
        xs, v = _separate(xs), _separate(v)
    ys = func(*xs) if isinstance(xs, typing.Sequence) else func(xs)
    _check_v_shape(v, ys)

    return ys, _grad(ys, xs, v)


def jvp(func, xs, v=None):
    r"""
    Computes the Jacobian-Vector product for a function at the given
    inputs and a vector in the tangent space induced by the inputs.

    Warning:
        This API is in beta, the signatures could be changed in future version.

    Args:
        func(Callable): The ``func`` takes as input a Tensor or a Sequence
            of Tensors and returns a Tensor or a Sequence of Tensors.
        xs(Tensor|Sequence[Tensor]): Used as positional arguments to
            evaluate ``func``.  The ``xs`` is accepted as one Tensor or a
            Sequence of Tensors.
        v(Tensor|Sequence[Tensor]|None, Optional): The tangent vector invovled
            in the JVP computation. The ``v`` matches the size and shape of
            ``xs`` . Default value is None and in this case is equivalent to 
            all ones the same size of ``xs`` .

    Returns:
        output(tuple):

            - func_out(Tensor|tuple[Tensor]): The output of ``func(xs)`` .
            - jvp(Tensor|tuple[Tensor]): The jvp result.

    Examples:

        .. code-block:: python

            import paddle


            def func(x):
                return paddle.matmul(x, x)


            x = paddle.ones(shape=[2, 2], dtype='float32')
            _, jvp_result = paddle.incubate.autograd.jvp(func, x)
            print(jvp_result)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[4., 4.],
            #         [4., 4.]])
            v = paddle.to_tensor([[1.0, 0.0], [0.0, 0.0]])
            _, jvp_result = paddle.incubate.autograd.jvp(func, x, v)
            print(jvp_result)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[2., 1.],
            #         [1., 0.]])

    """
    _check_inputs(func, xs, v)
    # ``_seprate`` breaks the dependencies between ``xs`` and other
    # variables. See more ``_seprate`` .
    if paddle.fluid._non_static_mode() or not utils.prim_enabled():
        xs, v = _separate(xs), _separate(v)
    ys = func(*xs) if isinstance(xs, typing.Sequence) else func(xs)
    _check_v_shape(v, xs)

    if not paddle.fluid._non_static_mode() and utils.prim_enabled():
        return ys, primapi.forward_grad(ys, xs, v)
    else:
        return ys, _double_backward_trick(ys, xs, v)


def _double_backward_trick(ys, xs, v):
    """Double backward trick for computing ``jvp`` by ``vjp``
    see details: https://j-towns.github.io/2017/06/12/A-new-trick.html
    """
    # The value of ys_grad is not important, it can be any random value in
    # theory, but it's required to set stop_gradient=False.
    ys_grad = _zeros_like_with_grad(ys)
    xs_grad = _grad(ys, xs, ys_grad)
    return _grad(xs_grad, ys_grad, v)


def _zeros_like_with_grad(xs):
    """Create a zero or zeros sequence Tensor like ``xs`` with a flag 
    ``stop_graident=False`` .
    """
    if not isinstance(xs, typing.Sequence):
        ys = paddle.zeros_like(xs)
        ys.stop_gradient = False
    else:
        ys = []
        for x in xs:
            y = paddle.zeros_like(x)
            y.stop_gradient = False
            ys.append(y)
    return ys


class Jacobian(object):
    r"""
    Computes the Jacobian matrix of a given function.

    If the function has multiple inputs and multiple outputs, during internal 
    implementation, all input tensors are concatenated after being flatten, 
    the batch dimension is retained, and the output is subject to the same 
    processing rules.

    Once the Jacobian ``J`` is constructed, you can use a multidimensional index 
    to retrieve the submatrix of ``J``, as same as slicing a Tensor. The 
    submatrix is lazily evaluated along row axis, and will be cached once 
    evaluated.

    For examples, supposing ``is_batched=True``, you can retrieve the submatrix 
    by following methods:

        * J[:], retrieving the full matrix.
        * J[:, :, j], retrieving the partial derivatives w.r.t. the j'th input
          variable.
        * J[:, i, :], retrieving the partial derivatives w.r.t. the i'th output
          variable.
        * J[:, i, j], retrieving the partial derivatives w.r.t. the i'th output
          variable and the j'th input variable.

    Notes:

        Eclipsis index is not supported currently.

    Warning:
        This API is in beta, the signatures could be changed in future version.

    Args:

        func (Callable): A python function that takes a Tensor or a sequence of 
            Tensors as inputs(the first dimension is batch size) and
            returns a Tensor  a sequence of Tensors.
        xs (Tensor|Sequence[Tensor]): The input to the function ``func`` .
        is_batched (bool): If true, the first axis is batch axis. Defaults to 
            False.

    Returns:

        Jacobian (Object): A python object retains the Jacobian matrix.

    Examples:

        .. code-block:: python

            import paddle


            def func(x, y):
                return paddle.matmul(x, y)


            x = paddle.to_tensor([[1., 2.], [3., 4.]])
            J = paddle.incubate.autograd.Jacobian(func, [x, x])
            print(J[:, :])
            # Tensor(shape=[4, 8], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[1., 3., 0., 0., 1., 0., 2., 0.],
            #         [2., 4., 0., 0., 0., 1., 0., 2.],
            #         [0., 0., 1., 3., 3., 0., 4., 0.],
            #         [0., 0., 2., 4., 0., 3., 0., 4.]])

            print(J[0, :])
            # Tensor(shape=[8], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [1., 3., 0., 0., 1., 0., 2., 0.])
            print(J[:, 0])
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [1., 2., 0., 0.])

    """

    def __init__(self, func, xs, is_batched=False):
        if not is_batched:
            self._jacobian = _JacobianNoBatch(func, xs)
        else:
            self._jacobian = _JacobianBatchFirst(func, xs)

    def __getitem__(self, indexes):
        return self._jacobian[indexes]

    @property
    def shape(self):
        """The shape of flattened Jacobian matrix.
        """
        return self._jacobian.shape


class Hessian(object):
    """
    Computes the Hessian matrix  with a given ``func`` with respect to ``xs`` .

    If the function has multiple inputs, during internal implementation, 
    all input tensors are concatenated after being flatten, the batch dimension 
    is retained.

    The Hessian submatrix is lazily evaluated, and can be retrieved with a 
    multidimensional indexes. See details ``Jacobian`` .

    Warning:
        This API is in beta, the signatures could be changed in future version.

    Args:
        func (Callable): A python function that takes a Tensor or a Tensor
            sequence as inputs and returns a Tensor with shape 
            ``[batch_size, 1]`` with batch or ``[1]`` without batch.
        xs (Tensor|Sequence(Tensor)): The input Tensor or Tensor sequence of 
            the function ``func``.
        is_batched (bool): If true, the first axis is batch axis. Defaults to 
            False.

    Returns:

        Hessian (Object): A python object retains the Hessian matrix.


    Examples:

    .. code-block:: python

        import paddle


        def reducer(x):
            return paddle.sum(x * x)


        x = paddle.rand([2, 2])
        h = paddle.incubate.autograd.Hessian(reducer, x)
        print(h[:])
        # Tensor(shape=[4, 4], dtype=float32, place=Place(gpu:0), stop_gradient=False,
        #        [[2., 0., 0., 0.],
        #         [0., 2., 0., 0.],
        #         [0., 0., 2., 0.],
        #         [0., 0., 0., 2.]])
    """

    def __init__(self, func, xs, is_batched=False):

        def _jac_func(*xs):
            jac = Jacobian(func, xs, is_batched=is_batched)
            if (is_batched and jac.shape[1] != 1) or (not is_batched
                                                      and jac.shape[0] != 1):
                raise RuntimeError(
                    "The function given to Hessian shoud return as single element Tensor or batched single element Tensor."
                )
            return jac[:, 0, :] if is_batched else jac[0, :]

        self.symbolic = Jacobian(_jac_func, xs, is_batched=is_batched)

    def __getitem__(self, indexes):
        return self.symbolic[indexes]

    @property
    def shape(self):
        """The shape of flattened Hessian matrix.
        """
        return self.symbolic.shape


class _Jacobian(object):
    """The base class for computing Jacobian matrix.

    ``_Jacobian`` implementes the core logic of multidimensional index and lazy 
    evaluation for Jacobian matrix, subclass only need to overwrite following 
    methods:

        * ``_lazy_axis()``,  return the axis along which will be lazy 
            evaluating.
        * ``_flatten(xs)``, flattens the inputs ``xs``.
        * ``_evaluate(index)``, evaluates one slice along ``_lazy_axis`` .

    Notes:

        Because currently PaddlePaddle only support reverse differentiation by 
        ``paddle.grad``, so lazy evaluation is only supported along the row of 
        Jacobian matrix, which means that slicing along row will get better 
        performance.

    """

    def __init__(self, func, xs):
        # Skip separating in prim mode temporarily, as detach and clone are not
        # primitive operators.
        if not paddle.fluid._non_static_mode() and utils.prim_enabled():
            self._xs = xs
        else:
            self._xs = _separate(xs)
        self._ys = func(*utils.as_tensors(self._xs))
        self._flatten_xs = self._flatten(utils.as_tensors(self._xs))
        self._flatten_ys = self._flatten(utils.as_tensors(self._ys))
        self._cache = {}

    @property
    def shape(self):
        raise NotImplementedError

    @property
    def _lazy_axis(self):
        """"The axis of lazily evaluated."""
        raise NotImplementedError

    def _lazy_indexes(self, indexes):
        idx = indexes[self._lazy_axis]
        return (idx, ) if isinstance(idx, int) else tuple(
            range(idx.start, idx.stop, idx.step))

    def _flatten(self, xs):
        raise NotImplementedError

    def _shifted_indexes(self, indexes, lazy_axis_size=0):
        idx = indexes[self._lazy_axis]
        shifted_lazy_axis_idx = 0 if isinstance(idx, int) else slice(
            0, lazy_axis_size, 1)
        return indexes[:self._lazy_axis] + (
            shifted_lazy_axis_idx, ) + indexes[self._lazy_axis + 1:]

    def __getitem__(self, indexes):
        indexes = _multi_index(indexes, self.shape)

        if isinstance(indexes[self._lazy_axis], int):
            other_indexes = indexes[:self._lazy_axis] + \
                indexes[self._lazy_axis+1:]
            return self._cached_evaluate(
                indexes[self._lazy_axis])[other_indexes]
        lazy_indexes = self._lazy_indexes(indexes)
        # Using concat and reshape to replace stack operator temporarily, as
        # it is not a primitive operator.
        shape = list(self.shape)
        shape[self._lazy_axis] = len(lazy_indexes)
        part_jac = paddle.concat(
            [self._cached_evaluate(i) for i in lazy_indexes],
            axis=self._lazy_axis).reshape(shape)
        return part_jac[self._shifted_indexes(indexes, len(lazy_indexes))]

    def _cached_evaluate(self, k):
        v = self._cache.get(k)
        if v is None:
            v = self._evaluate(k)
            self._cache[k] = v
        return v

    def _evaluate(self, index):
        """Evaluate one slice at along lazy axis."""
        raise NotImplementedError


class _JacobianNoBatch(_Jacobian):
    """Compute Jacobian matrix without batch dimension.
    Suppose the mapping is :math:`f: R^M \to R^N`, the output shape is 
    ``(N, M)`` .
    """

    def __init__(self, func, xs):
        super(_JacobianNoBatch, self).__init__(func, xs)

    @property
    def shape(self):
        return (self._flatten_ys.shape[0], self._flatten_xs.shape[0])

    @property
    def _lazy_axis(self):
        return 0

    def _flatten(self, xs):
        return paddle.concat(tuple(x.reshape((-1, )) for x in xs))

    def _evaluate(self, row_index):
        return self._flatten(_grad(
            self._flatten_ys[row_index],
            self._xs,
        ))


class _JacobianBatchFirst(_Jacobian):
    """Compute Jacobian matrix with batch at first axis.
    Suppose the mapping is :math:`f: R^{B,M} \to R^{B,N}`, the output shape is 
    ``(B, N, M)`` .
    """

    def __init__(self, func, xs):
        super(_JacobianBatchFirst, self).__init__(func, xs)

    @property
    def shape(self):
        return (self._flatten_xs.shape[0], self._flatten_ys.shape[1],
                self._flatten_xs.shape[1])

    @property
    def _lazy_axis(self):
        return 1

    def _flatten(self, xs):
        return paddle.concat(
            tuple(x.reshape((x.shape[0], -1)) for x in utils.as_tensors(xs)), 1)

    def _evaluate(self, row_index):
        return self._flatten(_grad(self._flatten_ys[:, row_index], self._xs))


def _multi_index(indexes, shape):
    """A tool for parsing N-dimensional index into a standard format.

    Currently supporting following input format:
        * ([positive|negative|slice], ...), the right-most elements can be 
            omited.

    The standard format after converted is slice tuple which contains N elements:
        * ([positive|slice], ..., [positive|slice])

    Notes: 
        Ellipsis indexes such as ``(..., i), (i, ...)`` is not supported.

    Args:
        indexes (tuple): The input indexes.
        shape (tuple): The input shape.

    Returns:
        tuple: The standard format index as the above description.
    """
    indexes = indexes if isinstance(indexes, typing.Sequence) else (indexes, )
    if any(isinstance(i, type(Ellipsis)) for i in indexes):
        raise IndexError('Ellipsis index currently is not supported.')
    # Fill the right-most elements.
    indexes = indexes + (slice(0, None, None), ) * (len(shape) - len(indexes))
    # Convert to positive index.
    positive_indexes = []
    for i, index in enumerate(indexes):
        if isinstance(index, slice):
            index = slice(index.start or 0, index.stop or shape[i], index.step
                          or 1)
            positive_indexes.append(
                slice(
                    index.start + shape[i] if index.start < 0 else index.start,
                    index.stop + shape[i] if index.stop < 0 else index.stop,
                    # Negative step means index backward, no need to convert to
                    # positive interger.
                    index.step))
        elif isinstance(index, int):
            positive_indexes.append(index + shape[i] if index < 0 else index)
        else:
            raise TypeError(f'Not supported index type {index}.')
    return tuple(positive_indexes)


def _replace_none_with_zero_tensor(xs, refs):
    if xs is None:
        xs = paddle.zeros_like(refs)
        xs.stop_gradient = refs.stop_gradient
        return xs
    elif isinstance(xs, typing.Sequence):
        return tuple(
            _replace_none_with_zero_tensor(x, refs[i])
            for i, x in enumerate(xs))
    else:
        return xs


def _grad(ys, xs, v=None):
    """A gradient function that can be used in dynamic graph and static graph.

    The ``grad`` combines ``paddle.grad`` used in dynamic graph and
    ``paddle.static.gradients`` used in static graph, and do following changes:

    * The ``allow_unused`` flag is removed and set defaults to true internally,
        none in outputs will be replaced by zero tensor.
    * The ``create_graph`` flag is removed and set defaults to true internally,
        only makes sense in dynamic graph.
    * When xs is a single Tensor, ``paddle.grad`` returns a list which only 
        contains one Tensor. It may confuse users, thus in this case we improve 
        to return a single Tensor in _grad interface.

    Args:
        ys (Tensor|Sequence[Tensor]): The output tensor or tensor sequence of
            the graph to compute gradients.
        xs (Tensor|Sequence[Tensor]): The input tensor or tensor sequence of the graph to
            compute gradients. The returned values of this API are the
            gradients of inputs .
        v (Tensor|Sequence[Tensor]|None,optional): The initial gradient values
            of outputs . If grad_outputs is None, the initial gradient values of
            outputs would be Tensors filled with 1; if grad_outputs is not None,
            it must have the same length as outputs , and in this case, the
            initial gradient value of the i-th outputs would be: (1) a Tensor
            filled with 1 when the i-th element of grad_outputs is None;
            (2) the i-th element of grad_outputs when the i-th element of
            grad_outputs is a Tensor. Default None.

    Returns:
        Tensor|tuple[Tensor]: Tensor or a tuple of Tensors, whose length is the 
            same as the Tensor number inside inputs, and the i-th returned 
            Tensor is the sum of gradients of outputs with respect to the i-th 
            inputs.
    """
    if paddle.fluid._non_static_mode():
568 569 570
        # paddle.grad returns a list though the inputs is a signle Tensor. The
        # follow code snippet fixes the problem by return the first element of
        # xs_grad when the xs is a signle Tensor.
571
        xs_grad = paddle.grad(ys, xs, v, create_graph=True, allow_unused=True)
572 573 574
        if isinstance(xs, paddle.fluid.framework.Variable) and isinstance(
                xs_grad, typing.Sequence) and len(xs_grad) > 0:
            xs_grad = xs_grad[0]
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
    else:
        xs_grad = paddle.incubate.autograd.grad(ys, xs, v)
    return _replace_none_with_zero_tensor(xs_grad, xs)


def _separate(xs):
    """
    ``_separate`` separates ``xs`` from the computation graph through ``clone`` 
    or ``deteach`` .

    Interally, ``paddle.grad(xs, ys)`` is stateful API implemented based on 
    computional graph, which will reduce gradients along all path from ys to xs.

    However, funcional autograd API such as ``vjp``, ``jvp`` is stateless, and 
    only compute gradients with a given ``func`` .

    For example, given a ``func`` :math:`y0=f(x0)`, supposing forward path is:
    ``x0 -> y0``, ``x0 -> x1 -> y0`` .
    ``paddle.grad(y0, x0)`` will reduce gradients along ``y0->x0`` and 
    ``y0->x1->x0``, and ``vjp`` only need reduce along ``y0->x0``.

    So, it's needed to clone or detach xs for breaking the dependencies with 
    other variables.

    Examples:

        .. code-block:: python

            import paddle
            from paddle.autograd.functional import _separate


            def func(x, y):
                return x * y


            x = paddle.ones((1,))
            x.stop_gradient = False

            y = func(x, x)
            print(paddle.grad(y, x))
            # [Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])]

            x1, x2 = _separate((x, x))
            y = func(x1, x2)
            print(paddle.grad(y, x1))
            # [Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])]

    """
    if isinstance(xs, typing.Sequence):
        return tuple(_single_separate(x) for x in xs)
    else:
        return _single_separate(xs)


def _single_separate(x):
    if x is None:  # x maybe none because grad input's v defaults to none.
        return x
    if not x.stop_gradient:
        return paddle.clone(x)
    else:  # use detach to share memory when no need gradients.
        x = x.detach()
        x.stop_gradient = False
        return x
    return x


def _check_inputs(func, xs, v=None):
    if not callable(func):
        raise TypeError(f"Expected 'fun' is Callable, but got {type(func)}.")

    if not isinstance(xs, (framework.Variable, typing.Sequence)):
        raise TypeError(f"Expected 'xs' is a Tensor|Sequence[Tensor],"
                        f"but got {type(xs)}.")
    if isinstance(xs, typing.Sequence) and not all(
            isinstance(x, framework.Variable) for x in xs):
        raise TypeError("All elements of 'xs' shoule be Tensor.")

    if not isinstance(v, (framework.Variable, typing.Sequence, type(None))):
        raise TypeError(
            f"Expected 'v' is Tensor|Sequence[Tensor]|None, but got {type(v)}.")

    if isinstance(v, typing.Sequence) and not all(
            isinstance(e, framework.Variable) for e in v):
        raise TypeError("All elements of 'xs' shoule be Tensor.")


def _check_v_shape(v, refs):
    if v is None:
        return

    v, refs = utils.as_tensors(v), utils.as_tensors(refs)
    if len(refs) != len(v):
        raise RuntimeError(f"The argument v is a tuple of invalid length:"
                           f"should be {len(refs)} but got {len(v)}.")

    for index, (element_v, element_ref) in enumerate(zip(v, refs)):
        if element_v.shape != element_ref.shape:
            raise RuntimeError(
                f"The v[{index}] has invalid shape: should "
                f"be {element_ref.shape} but got {element_v.shape}.")