cumsum_op_npu.cc 3.5 KB
Newer Older
F
furnace 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */

#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/cum_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
static void CumsumImp(const Tensor& input, Tensor* output,
                      const framework::NPUAttributeMap& attr_input,
                      const framework::ExecutionContext& ctx) {
  auto stream =
      ctx.template device_context<paddle::platform::NPUDeviceContext>()
          .stream();
  if (input.type() == framework::proto::VarType::INT64) {
    Tensor tmp_input;
    tmp_input.mutable_data<float>(input.dims(), ctx.GetPlace());
    auto dst_acl_dtype = ConvertToNpuDtype(tmp_input.type());
    const auto& cast_runner_1 =
        NpuOpRunner("Cast", {input}, {tmp_input},
                    {{"dst_type", static_cast<int>(dst_acl_dtype)}});
    cast_runner_1.Run(stream);

    Tensor tmp_output;
    tmp_output.mutable_data<float>(output->dims(), ctx.GetPlace());
    const auto& runner =
        NpuOpRunner("CumsumD", {tmp_input}, {tmp_output}, attr_input);
    runner.Run(stream);

    dst_acl_dtype = ConvertToNpuDtype(output->type());
    const auto& cast_runner_2 =
        NpuOpRunner("Cast", {tmp_output}, {*output},
                    {{"dst_type", static_cast<int>(dst_acl_dtype)}});
    cast_runner_2.Run(stream);
  } else {
    const auto& runner = NpuOpRunner("CumsumD", {input}, {*output}, attr_input);
    runner.Run(stream);
  }
}

F
furnace 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
template <typename DeviceContext, typename T>
class CumSumNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");
    int axis = ctx.Attr<int>("axis");
    bool exclusive = ctx.Attr<bool>("exclusive");
    bool reverse = ctx.Attr<bool>("reverse");

    out->mutable_data<T>(ctx.GetPlace());

    framework::NPUAttributeMap attr_input = {
        {"axis", axis}, {"exclusive", exclusive}, {"reverse", reverse}};

    bool flatten = ctx.Attr<bool>("flatten");
    if (flatten) {
      PADDLE_ENFORCE_EQ(
          axis, -1,
          platform::errors::InvalidArgument(
              "when flatten is true, attr axis must be default %d, but got %d",
              -1, axis));

      Tensor new_x(x->type());
      new_x.ShareDataWith(*x);

      new_x.Resize(framework::make_ddim({x->numel()}));

84
      CumsumImp(new_x, out, attr_input, ctx);
F
furnace 已提交
85
    } else {
86
      CumsumImp(*x, out, attr_input, ctx);
F
furnace 已提交
87 88 89 90 91 92 93 94 95 96 97
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(
    cumsum, ops::CumSumNPUKernel<plat::NPUDeviceContext, int>,
98 99 100
#ifdef PADDLE_WITH_ASCEND_INT64
    ops::CumSumNPUKernel<plat::NPUDeviceContext, int64_t>,
#endif
F
furnace 已提交
101 102
    ops::CumSumNPUKernel<plat::NPUDeviceContext, float>,
    ops::CumSumNPUKernel<plat::NPUDeviceContext, plat::float16>);