sum_op.cc 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/sum_op.h"
#include <vector>
Q
QI JUN 已提交
14
#include "paddle/framework/var_type_inference.h"
Y
Yang Yang(Tony) 已提交
15
#include "paddle/operators/detail/safe_ref.h"
16 17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {
using framework::Tensor;

class SumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
26
    PADDLE_ENFORCE(ctx->HasInputs("X"), "Inputs(X) should not be null");
27

Q
Qiao Longfei 已提交
28 29
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SumOp should not be null.");
30 31 32 33 34
    if (ctx->IsRuntime() &&
        ctx->GetOutputsVarType("Out")[0] ==
            framework::VarDesc::LOD_TENSOR_ARRAY) {
      return;  // skip runtime infershape when is tensor array;
    }
35

36
    auto x_dims = ctx->GetInputsDim("X");
Q
Qiao Longfei 已提交
37
    size_t N = x_dims.size();
Q
qijun 已提交
38
    PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1.");
Q
qiaolongfei 已提交
39 40

    auto in_dim = x_dims[0];
Q
Qiao Longfei 已提交
41 42
    for (size_t i = 1; i < N; i++) {
      auto dim = x_dims[i];
43
      PADDLE_ENFORCE_EQ(in_dim, dim, "Input tensors must have same shape");
Q
qijun 已提交
44
    }
Q
Qiao Longfei 已提交
45 46
    ctx->SetOutputDim("Out", in_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
47
  }
48 49

 protected:
Y
Yu Yang 已提交
50
  framework::OpKernelType GetKernelType(
51 52 53
      const framework::ExecutionContext& ctx) const override {
    auto x_vars = ctx.MultiInputVar("X");
    if (x_vars[0]->IsType<framework::LoDTensor>()) {
Y
Yu Yang 已提交
54 55 56
      return framework::OpKernelType(
          framework::ToDataType(x_vars[0]->Get<framework::LoDTensor>().type()),
          ctx.device_context());
57
    } else if (x_vars[0]->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
58 59 60 61
      return framework::OpKernelType(
          framework::ToDataType(
              x_vars[0]->Get<framework::SelectedRows>().value().type()),
          ctx.device_context());
62
    } else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
Y
Yang Yang(Tony) 已提交
63 64 65 66 67 68 69
      for (auto& x_var : x_vars) {
        auto& array = x_var->Get<framework::LoDTensorArray>();
        for (auto& each : array) {
          if (each.numel() != 0) {
            return framework::OpKernelType(framework::ToDataType(each.type()),
                                           ctx.device_context());
          }
70 71
        }
      }
Y
Yang Yang(Tony) 已提交
72
      PADDLE_THROW("Cannot find the input data type by all input data");
73 74 75 76
    }
    PADDLE_THROW("Unexpected branch. Input type is %s",
                 x_vars[0]->Type().name());
  }
77 78 79 80
};

class SumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
Qiao Longfei 已提交
81
  SumOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
82
      : OpProtoAndCheckerMaker(proto, op_checker) {
83 84 85
    AddInput("X", "(vector<Tensor>) The input tensors of sum operator.")
        .AsDuplicable();
    AddOutput("Out", "(Tensor) The output tensor of sum operator.");
86
    AddComment(R"DOC(
87
Sum operator.
88

89 90 91
This operators sums the input tensors. All the inputs can carry the 
LoD (Level of Details) information. However, the output only shares 
the LoD information with the first input.
92
)DOC");
93 94 95
  }
};

Q
QI JUN 已提交
96 97 98 99 100
class SumOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDescBind& op_desc,
                  framework::BlockDescBind* block) const override {
    auto& inputs = op_desc.Input("X");
101
    auto var_type = framework::VarDesc::SELECTED_ROWS;
Q
QI JUN 已提交
102

Y
Yang Yang(Tony) 已提交
103 104 105 106 107
    for (auto& name : op_desc.Input("X")) {
      VLOG(10) << name << " "
               << block->FindRecursiveOrCreateVar(name)->GetType();
    }

Q
QI JUN 已提交
108 109
    bool any_input_is_lod_tensor = std::any_of(
        inputs.begin(), inputs.end(), [block](const std::string& name) {
Y
Yang Yang(Tony) 已提交
110 111
          return block->FindRecursiveOrCreateVar(name)->GetType() ==
                 framework::VarDesc::LOD_TENSOR;
Q
QI JUN 已提交
112
        });
113 114

    auto is_tensor_array = [block](const std::string& name) {
Y
Yang Yang(Tony) 已提交
115
      return detail::Ref(block->FindRecursiveOrCreateVar(name)).GetType() ==
116 117 118 119 120 121 122 123 124
             framework::VarDesc::LOD_TENSOR_ARRAY;
    };

    bool any_input_is_tensor_array =
        std::any_of(inputs.begin(), inputs.end(), is_tensor_array);
    bool all_inputs_are_tensor_array =
        std::all_of(inputs.begin(), inputs.end(), is_tensor_array);

    if (any_input_is_tensor_array) {
Y
Yang Yang(Tony) 已提交
125 126 127 128 129 130 131 132 133 134
      if (!all_inputs_are_tensor_array) {
        std::ostringstream os;
        for (auto& each : inputs) {
          os << "    " << each << " type is "
             << detail::Ref(block->FindRecursiveOrCreateVar(each)).GetType()
             << "\n";
        }
        PADDLE_ENFORCE(all_inputs_are_tensor_array,
                       "Not all inputs are tensor array:\n%s", os.str());
      }
135 136 137
      var_type = framework::VarDesc::LOD_TENSOR_ARRAY;
    } else if (any_input_is_lod_tensor) {
      var_type = framework::VarDesc::LOD_TENSOR;
Q
QI JUN 已提交
138 139 140
    }

    auto out_var_name = op_desc.Output("Out").front();
Y
Yang Yang(Tony) 已提交
141 142 143 144
    auto& out_var = detail::Ref(block->FindRecursiveOrCreateVar(out_var_name));
    out_var.SetType(var_type);
    auto& in_var = detail::Ref(block->FindVarRecursive(inputs.front()));
    out_var.SetDataType(in_var.GetDataType());
Q
QI JUN 已提交
145 146 147
  }
};

148
class SumGradMaker : public framework::GradOpDescMakerBase {
149
 public:
150
  using framework::GradOpDescMakerBase::GradOpDescMakerBase;
151

Y
Yu Yang 已提交
152 153
  std::vector<std::unique_ptr<framework::OpDescBind>> operator()()
      const override {
154
    auto x_grads = InputGrad("X");
Y
Yu Yang 已提交
155
    std::vector<std::unique_ptr<framework::OpDescBind>> grad_ops;
156 157 158 159
    grad_ops.reserve(x_grads.size());
    auto og = OutputGrad("Out");
    std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops),
                   [&og](const std::string& x_grad) {
Y
Yu Yang 已提交
160 161 162 163 164 165
                     auto* grad_op = new framework::OpDescBind();
                     grad_op->SetType("scale");
                     grad_op->SetInput("X", og);
                     grad_op->SetOutput("Out", {x_grad});
                     grad_op->SetAttr("scale", 1.0f);
                     return std::unique_ptr<framework::OpDescBind>(grad_op);
166 167
                   });
    return grad_ops;
168 169 170 171 172 173 174
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
175

Q
QI JUN 已提交
176 177
REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradMaker,
                  ops::SumOpVarTypeInference);
Y
Yu Yang 已提交
178 179
REGISTER_OP_CPU_KERNEL(sum, ops::SumKernel<paddle::platform::CPUPlace, float>,
                       ops::SumKernel<paddle::platform::CPUPlace, double>);