stack_kernel.cu 3.8 KB
Newer Older
C
csy0225 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/memory/memory.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
19
#include "paddle/phi/kernels/stack_kernel.h"
C
csy0225 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

namespace phi {

template <typename T, typename IntType>
__global__ void StackCUDAKernel(T** input_ptrs,
                                int split_size,
                                int rows,
                                int cols,
                                T* __restrict__ output) {
  IntType grid_x = blockIdx.x * blockDim.x + threadIdx.x;

  for (; grid_x < cols; grid_x += blockDim.x * gridDim.x) {
    IntType grid_y = blockIdx.y * blockDim.y + threadIdx.y;

    IntType split = grid_x / split_size;
    const T* input_ptr = input_ptrs[split];
    IntType col_offset = grid_x % split_size;
#pragma unroll
    for (; grid_y < rows; grid_y += blockDim.y * gridDim.y) {
      output[grid_y * cols + grid_x] =
          input_ptr[grid_y * split_size + col_offset];
    }
  }
}

template <typename T, typename Context>
void StackKernel(const Context& dev_ctx,
                 const std::vector<const DenseTensor*>& x,
                 int axis,
                 DenseTensor* out) {
  if (axis < 0) axis += (x[0]->dims().size() + 1);

  int n = static_cast<int>(x.size());
  T* y_data = dev_ctx.template Alloc<T>(out);
  std::vector<const T*> x_datas(n);
  for (int i = 0; i < n; i++) {
    x_datas[i] = x[i]->data<T>();
  }

  auto tmp_x_data = paddle::memory::Alloc(dev_ctx, x_datas.size() * sizeof(T*));
  paddle::memory::Copy(dev_ctx.GetPlace(),
                       tmp_x_data->ptr(),
                       phi::CPUPlace(),
                       reinterpret_cast<void*>(x_datas.data()),
                       x_datas.size() * sizeof(T*),
                       dev_ctx.stream());

  // Split x dim from axis to matrix
  int x_row = 1, x_col = 1;
  for (int i = 0; i < axis; ++i) {
    x_row *= x[0]->dims()[i];
  }
  x_col = x[0]->numel() / x_row;
  int out_col = x_col * n;

  auto config =
      phi::backends::gpu::GetGpuLaunchConfig2D(dev_ctx, out_col, x_row);

  if (out->numel() < std::numeric_limits<int32_t>::max()) {
79 80 81 82 83 84 85 86 87
    StackCUDAKernel<T, int32_t>
        <<<config.block_per_grid,
           config.thread_per_block,
           0,
           dev_ctx.stream()>>>(reinterpret_cast<T**>(tmp_x_data->ptr()),
                               x_col,
                               x_row,
                               out_col,
                               y_data);
C
csy0225 已提交
88
  } else {
89 90 91 92 93 94 95 96 97
    StackCUDAKernel<T, int64_t>
        <<<config.block_per_grid,
           config.thread_per_block,
           0,
           dev_ctx.stream()>>>(reinterpret_cast<T**>(tmp_x_data->ptr()),
                               x_col,
                               x_row,
                               out_col,
                               y_data);
C
csy0225 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(stack,
                   GPU,
                   ALL_LAYOUT,
                   phi::StackKernel,
                   float,
                   double,
                   int64_t,
                   int,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}