matmul_v2_op_npu.cc 14.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/matmul_v2_op.h"
19
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28
using Tensor = framework::Tensor;
using NPUDeviceContext = platform::NPUDeviceContext;

template <typename T>
static void MatMul2D(const framework::ExecutionContext& ctx,
29 30 31 32 33
                     const aclrtStream& stream,
                     const Tensor& X,
                     const Tensor& Y,
                     Tensor* Out,
                     const bool trans_x,
34 35 36
                     const bool trans_y) {
  Out->mutable_data<T>(ctx.GetPlace());
  const auto& runner =
37 38 39
      NpuOpRunner("MatMul",
                  {X, Y},
                  {*Out},
40 41 42 43 44 45
                  {{"transpose_x1", trans_x}, {"transpose_x2", trans_y}});
  runner.Run(stream);
}

template <typename T>
static void MatMulND(const framework::ExecutionContext& ctx,
46 47 48 49 50
                     const aclrtStream& stream,
                     const Tensor& X,
                     const Tensor& Y,
                     Tensor* Out,
                     const bool trans_x,
51 52
                     const bool trans_y) {
  Out->mutable_data<T>(ctx.GetPlace());
53 54 55
  const auto& runner = NpuOpRunner("BatchMatMul",
                                   {X, Y},
                                   {*Out},
56 57 58 59 60 61 62 63
                                   {{"adj_x1", trans_x}, {"adj_x2", trans_y}});
  runner.Run(stream);
}

template <typename T>
static void ReduceDims(const framework::ExecutionContext& ctx,
                       const aclrtStream& stream,
                       const std::vector<int64_t>& dims,
64 65
                       const std::vector<int64_t>& brd_dims,
                       const Tensor& in,
66 67 68 69 70 71 72 73 74 75 76 77 78 79
                       Tensor* out) {
  std::vector<int64_t> axes;
  int64_t size = brd_dims.size();
  int64_t diff = brd_dims.size() - dims.size();
  for (int64_t i = 0; i < size; ++i) {
    if (i < diff) {
      axes.push_back(i);
      continue;
    }
    if (brd_dims[i] > dims[i - diff]) {
      axes.push_back(i);
    }
  }
  out->mutable_data<T>(ctx.GetPlace());
80 81
  const auto& runner = NpuOpRunner(
      "ReduceSumD", {in}, {*out}, {{"axes", axes}, {"keep_dims", false}});
82 83 84 85
  runner.Run(stream);
}

template <typename T>
86 87 88
class MatMulV2NPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
89 90 91 92 93 94
    auto* X = ctx.Input<Tensor>("X");
    auto* Y = ctx.Input<Tensor>("Y");
    auto* Out = ctx.Output<Tensor>("Out");
    const bool trans_x = ctx.Attr<bool>("trans_x");
    const bool trans_y = ctx.Attr<bool>("trans_y");

95 96 97
    std::vector<int64_t> x_dims = phi::vectorize(X->dims());
    std::vector<int64_t> y_dims = phi::vectorize(Y->dims());
    std::vector<int64_t> out_dims = phi::vectorize(Out->dims());
98 99 100
    int x_ndim = x_dims.size();
    int y_ndim = y_dims.size();
    int out_ndim = out_dims.size();
101

102
    auto stream = ctx.template device_context<NPUDeviceContext>().stream();
103

104 105 106
    // Case 1: [K] x [K] = [1]
    if (x_ndim == 1 && y_ndim == 1) {
      PADDLE_ENFORCE_EQ(
107 108
          X->numel(),
          Y->numel(),
109 110 111 112
          platform::errors::InvalidArgument(
              "X's numbers must be equal to Y's numbers,"
              "when X/Y's dims =1. But received X has [%d] elements,"
              "received Y has [%d] elements",
113 114
              X->numel(),
              Y->numel()));
115 116
      Out->Resize({1});
      Out->mutable_data<T>(ctx.GetPlace());
117

118
      const auto& runner = NpuOpRunner("Dot", {*X, *Y}, {*Out});
119
      runner.Run(stream);
120 121 122 123 124 125 126 127 128 129
      return;
    }

    // Resize dim 1 to 2
    Tensor x_temp, y_temp;
    x_temp.ShareDataWith(*X);
    y_temp.ShareDataWith(*Y);
    if (x_ndim == 1) {
      x_dims.insert(x_dims.begin(), 1);
      out_dims.insert(out_dims.end() - 1, 1);
130
      x_temp.Resize(phi::make_ddim(x_dims));
131 132 133 134 135 136
      x_ndim = 2;
      out_ndim += 1;
    }
    if (y_ndim == 1) {
      y_dims.push_back(1);
      out_dims.push_back(1);
137
      y_temp.Resize(phi::make_ddim(y_dims));
138 139 140 141 142 143
      y_ndim = 2;
      out_ndim += 1;
    }

    const int K = trans_x ? x_dims[x_ndim - 2] : x_dims[x_ndim - 1];
    if (trans_y) {
144 145 146 147 148 149 150 151 152 153
      PADDLE_ENFORCE_EQ(
          y_dims[y_ndim - 1],
          K,
          platform::errors::InvalidArgument("Input(Y) has error dim."
                                            "Y'dims[%d] must be equal to %d"
                                            "But received Y'dims[%d] is %d",
                                            y_ndim - 1,
                                            K,
                                            y_ndim - 1,
                                            y_dims[y_ndim - 1]));
154
    } else {
155 156 157 158 159 160 161 162 163 164
      PADDLE_ENFORCE_EQ(
          y_dims[y_ndim - 2],
          K,
          platform::errors::InvalidArgument("Input(Y) has error dim."
                                            "Y'dims[%d] must be equal to %d"
                                            "But received Y'dims[%d] is %d",
                                            y_ndim - 2,
                                            K,
                                            y_ndim - 2,
                                            y_dims[y_ndim - 2]));
165
    }
166 167 168 169 170 171 172 173 174 175 176

    // Case 2: [M, K] x [K, N] = [M, N]
    if (x_ndim == 2 && y_ndim == 2) {
      MatMul2D<T>(ctx, stream, x_temp, y_temp, Out, trans_x, trans_y);
      return;
    }

    // Case 3: [B, M, K] x [K, N] =  [B, M, N], when trans_x = false
    // Equal: [B * M, K] x [K, N] = [B * M, N] => [B, M, N]
    if (trans_x == false && y_ndim == 2) {
      std::vector<int64_t> vec_dim = {x_temp.numel() / K, K};
177
      x_temp.Resize(phi::make_ddim(vec_dim));
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
      MatMul2D<T>(ctx, stream, x_temp, y_temp, Out, trans_x, trans_y);
      return;
    }

    // Case 4: [B, M, K] x  [B, K, N] = [B, M, N]
    std::vector<int64_t> x_broadcast_dims(out_ndim, 1);
    std::vector<int64_t> y_broadcast_dims(out_ndim, 1);
    std::copy(out_dims.begin(), out_dims.end() - 2, x_broadcast_dims.begin());
    std::copy(out_dims.begin(), out_dims.end() - 2, y_broadcast_dims.begin());
    std::copy(x_dims.end() - 2, x_dims.end(), x_broadcast_dims.end() - 2);
    std::copy(y_dims.end() - 2, y_dims.end(), y_broadcast_dims.end() - 2);

    Tensor x_temp_brd(X->type());
    if (x_dims == x_broadcast_dims) {
      x_temp_brd.ShareDataWith(*X);
193
      x_temp_brd.Resize(phi::make_ddim(x_broadcast_dims));
194
    } else {
195
      x_temp_brd.Resize(phi::make_ddim(x_broadcast_dims));
196 197 198 199 200 201 202 203 204 205 206 207
      x_temp_brd.mutable_data<T>(ctx.GetPlace());
      NpuOpRunner runner_brd;
      runner_brd.SetType("BroadcastTo")
          .AddInput(x_temp)
          .AddInput(std::move(x_broadcast_dims))
          .AddOutput(x_temp_brd)
          .Run(stream);
    }

    Tensor y_temp_brd(Y->type());
    if (y_dims == y_broadcast_dims) {
      y_temp_brd.ShareDataWith(*Y);
208
      y_temp_brd.Resize(phi::make_ddim(y_broadcast_dims));
209
    } else {
210
      y_temp_brd.Resize(phi::make_ddim(y_broadcast_dims));
211 212 213 214 215 216 217 218 219
      y_temp_brd.mutable_data<T>(ctx.GetPlace());
      NpuOpRunner runner_brd;
      runner_brd.SetType("BroadcastTo")
          .AddInput(y_temp)
          .AddInput(std::move(y_broadcast_dims))
          .AddOutput(y_temp_brd)
          .Run(stream);
    }
    MatMulND<T>(ctx, stream, x_temp_brd, y_temp_brd, Out, trans_x, trans_y);
220 221 222
  }
};

223
template <typename T>
224 225 226
class MatMulV2GradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
227 228 229 230 231 232 233
    auto* X = ctx.Input<Tensor>("X");
    auto* Y = ctx.Input<Tensor>("Y");
    auto* dOut = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dX = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dY = ctx.Output<Tensor>(framework::GradVarName("Y"));
    const bool trans_x = ctx.Attr<bool>("trans_x");
    const bool trans_y = ctx.Attr<bool>("trans_y");
234

235 236 237
    std::vector<int64_t> x_dims = phi::vectorize(X->dims());
    std::vector<int64_t> y_dims = phi::vectorize(Y->dims());
    std::vector<int64_t> out_dims = phi::vectorize(dOut->dims());
238 239 240
    int x_ndim = x_dims.size();
    int y_ndim = y_dims.size();
    int out_ndim = out_dims.size();
241

242
    auto stream = ctx.template device_context<NPUDeviceContext>().stream();
243

244 245 246 247 248 249 250 251 252 253 254
    // Case 1: [K] x [K] = [1]
    if (x_ndim == 1 && y_ndim == 1) {
      Tensor dout_temp(dOut->type());
      dout_temp.Resize(X->dims());
      dout_temp.mutable_data<T>(ctx.GetPlace());
      NpuOpRunner runner;
      runner.SetType("BroadcastTo")
          .AddInput(*dOut)
          .AddInput(std::move(x_dims))
          .AddOutput(dout_temp)
          .Run(stream);
255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
      if (dX) {
        dX->mutable_data<T>(ctx.GetPlace());
        const auto& runner_dx = NpuOpRunner("Mul", {dout_temp, *Y}, {*dX}, {});
        runner_dx.Run(stream);
      }
      if (dY) {
        dY->mutable_data<T>(ctx.GetPlace());
        const auto& runner_dy = NpuOpRunner("Mul", {dout_temp, *X}, {*dY}, {});
        runner_dy.Run(stream);
      }
      return;
    }

    // Resize dim 1 to 2
    Tensor x_temp, y_temp, dout_temp;
    x_temp.ShareDataWith(*X);
    y_temp.ShareDataWith(*Y);
    dout_temp.ShareDataWith(*dOut);
    if (x_ndim == 1) {
      x_dims.insert(x_dims.begin(), 1);
      out_dims.insert(out_dims.end() - 1, 1);
277 278
      x_temp.Resize(phi::make_ddim(x_dims));
      dout_temp.Resize(phi::make_ddim(out_dims));
279 280 281 282 283 284
      x_ndim = 2;
      out_ndim += 1;
    }
    if (y_ndim == 1) {
      y_dims.push_back(1);
      out_dims.push_back(1);
285 286
      y_temp.Resize(phi::make_ddim(y_dims));
      dout_temp.Resize(phi::make_ddim(out_dims));
287 288 289 290 291 292 293
      y_ndim = 2;
      out_ndim += 1;
    }

    // Case 2: [M, K] x [K, N] = [M, N]
    if (out_ndim == 2) {
      if (dX) {
294
        dX->Resize(phi::make_ddim(x_dims));
295 296 297 298
        if (trans_x) {
          MatMul2D<T>(ctx, stream, y_temp, dout_temp, dX, trans_y, true);
        } else {
          MatMul2D<T>(ctx, stream, dout_temp, y_temp, dX, false, !trans_y);
299
        }
300
        dX->Resize(X->dims());
301
      }
302
      if (dY) {
303
        dY->Resize(phi::make_ddim(y_dims));
304 305 306 307
        if (trans_y) {
          MatMul2D<T>(ctx, stream, dout_temp, x_temp, dY, true, trans_x);
        } else {
          MatMul2D<T>(ctx, stream, x_temp, dout_temp, dY, !trans_x, false);
308
        }
309 310 311 312 313 314 315
        dY->Resize(Y->dims());
      }
      return;
    }

    const int K = trans_x ? x_dims[x_ndim - 2] : x_dims[x_ndim - 1];
    const int N = trans_y ? y_dims[y_ndim - 2] : y_dims[y_ndim - 1];
316

317 318 319 320 321
    // Case 3: [B, M, K] x [K, N] =  [B, M, N], when trans_x = false
    // Equal: [B * M, K] x [K, N] = [B * M, N] => [B, M, N]
    if (trans_x == false && y_ndim == 2) {
      std::vector<int64_t> x_vec_dim = {x_temp.numel() / K, K};
      dout_temp.Resize(
322
          phi::make_ddim(std::vector<int64_t>{dout_temp.numel() / N, N}));
323
      if (dX) {
324
        dX->Resize(phi::make_ddim(x_vec_dim));
325 326 327 328
        MatMul2D<T>(ctx, stream, dout_temp, y_temp, dX, false, !trans_y);
        dX->Resize(X->dims());
      }
      if (dY) {
329
        x_temp.Resize(phi::make_ddim(x_vec_dim));
330 331 332 333
        if (trans_y) {
          MatMul2D<T>(ctx, stream, dout_temp, x_temp, dY, true, false);
        } else {
          MatMul2D<T>(ctx, stream, x_temp, dout_temp, dY, true, false);
334
        }
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
      }
      return;
    }

    // Case 4: [B, M, K] x  [B, K, N] = [B, M, N]
    std::vector<int64_t> x_broadcast_dims(out_ndim, 1);
    std::vector<int64_t> y_broadcast_dims(out_ndim, 1);
    std::copy(out_dims.begin(), out_dims.end() - 2, x_broadcast_dims.begin());
    std::copy(out_dims.begin(), out_dims.end() - 2, y_broadcast_dims.begin());
    std::copy(x_dims.end() - 2, x_dims.end(), x_broadcast_dims.end() - 2);
    std::copy(y_dims.end() - 2, y_dims.end(), y_broadcast_dims.end() - 2);

    Tensor x_temp_brd(X->type());
    if (x_dims == x_broadcast_dims) {
      x_temp_brd.ShareDataWith(*X);
350
      x_temp_brd.Resize(phi::make_ddim(x_broadcast_dims));
351
    } else {
352
      x_temp_brd.Resize(phi::make_ddim(x_broadcast_dims));
353 354 355 356 357 358 359 360
      x_temp_brd.mutable_data<T>(ctx.GetPlace());
      NpuOpRunner runner_brd;
      runner_brd.SetType("BroadcastTo")
          .AddInput(x_temp)
          .AddInput(std::move(x_broadcast_dims))
          .AddOutput(x_temp_brd)
          .Run(stream);
    }
361

362 363 364
    Tensor y_temp_brd(Y->type());
    if (y_dims == y_broadcast_dims) {
      y_temp_brd.ShareDataWith(*Y);
365
      y_temp_brd.Resize(phi::make_ddim(y_broadcast_dims));
366
    } else {
367
      y_temp_brd.Resize(phi::make_ddim(y_broadcast_dims));
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
      y_temp_brd.mutable_data<T>(ctx.GetPlace());
      NpuOpRunner runner_brd;
      runner_brd.SetType("BroadcastTo")
          .AddInput(y_temp)
          .AddInput(std::move(y_broadcast_dims))
          .AddOutput(y_temp_brd)
          .Run(stream);
    }

    if (dX) {
      if (x_dims == x_broadcast_dims) {
        if (trans_x) {
          MatMulND<T>(ctx, stream, y_temp_brd, dout_temp, dX, trans_y, true);
        } else {
          MatMulND<T>(ctx, stream, dout_temp, y_temp_brd, dX, false, !trans_y);
383
        }
384 385
      } else {
        Tensor dx_temp(X->type());
386
        dx_temp.Resize(phi::make_ddim(x_broadcast_dims));
387
        if (trans_x) {
388 389
          MatMulND<T>(
              ctx, stream, y_temp_brd, dout_temp, &dx_temp, trans_y, true);
390
        } else {
391 392
          MatMulND<T>(
              ctx, stream, dout_temp, y_temp_brd, &dx_temp, false, !trans_y);
393
        }
394 395 396 397 398 399 400 401 402 403 404 405
        ReduceDims<T>(ctx, stream, x_dims, x_broadcast_dims, dx_temp, dX);
      }
    }
    if (dY) {
      if (y_dims == y_broadcast_dims) {
        if (trans_y) {
          MatMulND<T>(ctx, stream, dout_temp, x_temp_brd, dY, true, trans_x);
        } else {
          MatMulND<T>(ctx, stream, x_temp_brd, dout_temp, dY, !trans_x, false);
        }
      } else {
        Tensor dy_temp(Y->type());
406
        dy_temp.Resize(phi::make_ddim(y_broadcast_dims));
407
        if (trans_y) {
408 409
          MatMulND<T>(
              ctx, stream, dout_temp, x_temp_brd, &dy_temp, true, trans_x);
410
        } else {
411 412
          MatMulND<T>(
              ctx, stream, x_temp_brd, dout_temp, &dy_temp, !trans_x, false);
413 414
        }
        ReduceDims<T>(ctx, stream, y_dims, y_broadcast_dims, dy_temp, dY);
415 416 417 418
      }
    }
  }
};
419

420 421 422 423 424
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

425 426
REGISTER_OP_NPU_KERNEL(matmul_v2,
                       ops::MatMulV2NPUKernel<float>,
427
                       ops::MatMulV2NPUKernel<paddle::platform::float16>);
428 429
REGISTER_OP_NPU_KERNEL(matmul_v2_grad,
                       ops::MatMulV2GradNPUKernel<float>,
430
                       ops::MatMulV2GradNPUKernel<paddle::platform::float16>);