conv_op.h 17.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <vector>
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
20
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
21 22 23
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

武毅 已提交
30 31
// Base convolution operator definations for other conv
// like operators to reuse the implementation.
Y
Yang Yang 已提交
32 33
inline int ConvOutputSize(int input_size, int filter_size, int dilation,
                          int padding, int stride) {
C
chengduoZH 已提交
34
  const int dkernel = dilation * (filter_size - 1) + 1;
C
chengduoZH 已提交
35 36 37 38 39 40 41 42
  int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
  PADDLE_ENFORCE(
      output_size > 0,
      "Due to the settings of padding(%d), filter_size(%d), dilation(%d) and "
      "stride(%d), the output size is less than 0, please check "
      "again. Input_size:%d",
      padding, filter_size, dilation, stride, input_size);

武毅 已提交
43 44
  return output_size;
}
45 46 47 48
inline bool IsExpand(const std::vector<int64_t>& filter_dim,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations) {
C
chengduoZH 已提交
49 50
  bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
C
chengduoZH 已提交
51
    filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
C
chengduoZH 已提交
52 53 54
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
C
chengduoZH 已提交
55
  }
C
chengduoZH 已提交
56
  return !(filter_1 && strides_1 && padding_0 && dilation_1);
C
chengduoZH 已提交
57
}
武毅 已提交
58 59 60 61 62

// Define Op classes in .h file so that other conv
// operator implementations can reuse the code.
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
63
  Conv2DOpMaker(OpProto* proto, OpAttrChecker* op_checker);
武毅 已提交
64 65
};

C
chengduoZH 已提交
66 67
class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
68
  Conv3DOpMaker(OpProto* proto, OpAttrChecker* op_checker);
C
chengduoZH 已提交
69 70 71
};

class ConvOp : public framework::OperatorWithKernel {
武毅 已提交
72 73 74
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
75 76 77 78

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
79 80
};

C
chengduoZH 已提交
81
class ConvOpGrad : public framework::OperatorWithKernel {
武毅 已提交
82 83 84
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
85 86 87 88

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
89 90
};

Q
QI JUN 已提交
91
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
92
class GemmConvKernel : public framework::OpKernel<T> {
93 94 95
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
H
hedaoyuan 已提交
96 97 98 99
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
100 101 102
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

C
chengduoZH 已提交
103
    int groups = context.Attr<int>("groups");
104 105
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
106
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
107

C
chengduoZH 已提交
108 109
    const int batch_size = static_cast<int>(input->dims()[0]);

C
chengduoZH 已提交
110
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
111
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
112
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
113
    std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
114

H
hedaoyuan 已提交
115
    // use col_shape in the im2col calculation
C
chengduoZH 已提交
116 117
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
118 119 120 121 122 123 124
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = input->dims()[1] / groups;
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
125 126
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));

H
hedaoyuan 已提交
127
    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
128 129 130
    // size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d *
    // o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
131
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
132

C
chengduoZH 已提交
133
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
H
hedaoyuan 已提交
134
    Tensor col;
H
hedaoyuan 已提交
135 136 137
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
138
    Tensor col_matrix;
C
chengduoZH 已提交
139
    if (is_expand) {
C
chengduoZH 已提交
140 141 142 143
      col.mutable_data<T>(col_shape, context.GetPlace());
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
144

C
chengduoZH 已提交
145 146 147
    framework::DDim input_shape = framework::slice_ddim(
        input->dims(), 1, static_cast<int>(input->dims().size()));

H
hedaoyuan 已提交
148 149
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
150 151
    filter.Resize(filter_matrix_shape);

C
chengduoZH 已提交
152 153 154 155 156 157 158 159
    framework::DDim output_matrix_shape = {
        output->dims()[1],
        output->numel() / (output->dims()[0] * output->dims()[1])};

    // convolution operator: im2col(or vol2col) + gemm
    int in_step = static_cast<int>(input->dims()[1]) / groups;
    int out_step = static_cast<int>(output->dims()[1]) / groups;

Q
QI JUN 已提交
160 161
    math::Vol2ColFunctor<DeviceContext, T> vol2col;
    math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
C
chengduoZH 已提交
162

Q
QI JUN 已提交
163
    auto& dev_ctx = context.template device_context<DeviceContext>();
Y
Yu Yang 已提交
164
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
165 166 167
    for (int i = 0; i < batch_size; i++) {
      Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
      Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);
C
chengduoZH 已提交
168

C
chengduoZH 已提交
169 170
      for (int g = 0; g < groups; g++) {
        Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
171

C
chengduoZH 已提交
172
        if (!is_expand) {
C
chengduoZH 已提交
173 174 175
          col.ShareDataWith(in_slice);
          col_matrix.ShareDataWith(col);
          col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
176
        } else if (data_dim == 2U) {
C
chengduoZH 已提交
177
          // im2col
Q
QI JUN 已提交
178
          im2col(dev_ctx, in_slice, dilations, strides,
C
chengduoZH 已提交
179 180 181
                 std::vector<int>{paddings[0], paddings[1], paddings[0],
                                  paddings[1]},
                 &col);
C
chengduoZH 已提交
182
        } else if (data_dim == 3U) {
C
chengduoZH 已提交
183
          // vol2col
Q
QI JUN 已提交
184
          vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
185
        }
C
chengduoZH 已提交
186 187 188 189

        // gemm
        Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
        Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
190 191
        blas.MatMul(filter_slice, false, col_matrix, false, T(1.0), &out_slice,
                    T(0.0));
H
hedaoyuan 已提交
192
      }
193 194 195 196
    }
  }
};

Q
QI JUN 已提交
197
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
198
class GemmConvGradKernel : public framework::OpKernel<T> {
199 200
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
201 202 203 204 205
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
H
hedaoyuan 已提交
206
    Tensor* filter_grad =
H
hedaoyuan 已提交
207
        context.Output<Tensor>(framework::GradVarName("Filter"));
H
hedaoyuan 已提交
208 209 210 211
    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
H
hedaoyuan 已提交
212

C
chengduoZH 已提交
213 214
    if (!input_grad && !filter_grad) return;

C
chengduoZH 已提交
215
    int groups = context.Attr<int>("groups");
H
hedaoyuan 已提交
216 217
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
218
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
H
hedaoyuan 已提交
219

C
chengduoZH 已提交
220
    const int batch_size = static_cast<int>(input->dims()[0]);
H
hedaoyuan 已提交
221

C
chengduoZH 已提交
222
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
223
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
224
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
225 226
    std::vector<int64_t> output_shape_vec(
        framework::vectorize(output_grad->dims()));
C
chengduoZH 已提交
227

C
chengduoZH 已提交
228 229 230
    // use col_shape in the im2col calculation
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
231 232 233 234 235 236 237
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = input->dims()[1] / groups;
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
238
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
239 240

    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
241 242 243 244
    // size: (i_c/g * k_h * k_w, o_h * o_w)
    // or
    // (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
245
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
246 247 248

    framework::DDim input_shape = framework::slice_ddim(
        input->dims(), 1, static_cast<int>(input->dims().size()));
C
chengduoZH 已提交
249

C
chengduoZH 已提交
250 251
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
C
chengduoZH 已提交
252 253 254
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {
C
chengduoZH 已提交
255 256 257
        output_grad->dims()[1],
        output_grad->numel() /
            (output_grad->dims()[0] * output_grad->dims()[1])};
C
chengduoZH 已提交
258

C
chengduoZH 已提交
259 260 261 262
    // convolution backward input operator:  gemm + col2im(or col2vol)
    // convolution backward weight operator: im2col(or vol2col) + gemm
    int in_step = static_cast<int>(input->dims()[1]) / groups;
    int out_step = static_cast<int>(output_grad->dims()[1]) / groups;
C
chengduoZH 已提交
263

C
chengduoZH 已提交
264
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
C
chengduoZH 已提交
265 266 267 268
    Tensor col;
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
269
    Tensor col_matrix;
C
chengduoZH 已提交
270
    if (is_expand) {
C
chengduoZH 已提交
271 272 273 274
      col.mutable_data<T>(col_shape, context.GetPlace());
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
C
chengduoZH 已提交
275

Q
QI JUN 已提交
276 277
    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();
Y
Yu Yang 已提交
278
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
279 280 281 282

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());

C
chengduoZH 已提交
283 284 285
      // if is_expand is false, the operation of set_zero is unnecessary,
      // because math::matmul will reset input_grad.
      if (is_expand) {
C
chengduoZH 已提交
286
        set_zero(dev_ctx, input_grad, static_cast<T>(0));
C
chengduoZH 已提交
287
      }
Q
QI JUN 已提交
288 289
      math::Col2VolFunctor<DeviceContext, T> col2vol;
      math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
C
chengduoZH 已提交
290

C
chengduoZH 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_grad_batch = input_grad->Slice(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
          // gemm
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);

          Tensor in_grad_slice =
              in_grad_batch.Slice(g * in_step, (g + 1) * in_step);

          if (!is_expand) {
C
chengduoZH 已提交
305 306
            col_matrix.ShareDataWith(in_grad_slice);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
307
          }
C
chengduoZH 已提交
308 309
          blas.MatMul(filter_slice, true, out_grad_slice, false, T(1.0),
                      &col_matrix, T(0.0));
C
chengduoZH 已提交
310

C
chengduoZH 已提交
311
          if (is_expand && data_dim == 2U) {
Q
QI JUN 已提交
312
            col2im(dev_ctx, col, dilations, strides,
C
chengduoZH 已提交
313 314 315
                   std::vector<int>{paddings[0], paddings[1], paddings[0],
                                    paddings[1]},
                   &in_grad_slice);
C
chengduoZH 已提交
316
          } else if (is_expand && data_dim == 3U) {
Q
QI JUN 已提交
317
            col2vol(dev_ctx, col, dilations, strides, paddings, &in_grad_slice);
C
chengduoZH 已提交
318
          }
C
chengduoZH 已提交
319 320 321 322 323 324 325 326
        }
      }
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      Tensor filter_grad_ = *filter_grad;
      filter_grad_.Resize(filter_matrix_shape);
Q
QI JUN 已提交
327 328 329
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
C
chengduoZH 已提交
330 331 332 333 334 335 336 337 338
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
          // im2col
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
C
chengduoZH 已提交
339

C
chengduoZH 已提交
340
          if (!is_expand) {
C
chengduoZH 已提交
341 342 343
            col.ShareDataWith(in_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
344
          } else if (data_dim == 2U) {
Q
QI JUN 已提交
345
            im2col(dev_ctx, in_slice, dilations, strides,
C
chengduoZH 已提交
346 347 348
                   std::vector<int>{paddings[0], paddings[1], paddings[0],
                                    paddings[1]},
                   &col);
C
chengduoZH 已提交
349
          } else if (data_dim == 3U) {
Q
QI JUN 已提交
350
            vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
351
          }
C
chengduoZH 已提交
352 353 354 355

          // gemm
          Tensor filter_grad_slice =
              filter_grad_.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
356 357
          blas.MatMul(out_grad_slice, false, col_matrix, true, T(1.0),
                      &filter_grad_slice, T(1.0));
C
chengduoZH 已提交
358 359 360 361 362
        }
      }
    }
  }
};
Z
zlx 已提交
363 364 365 366 367 368 369 370 371 372

template <typename DeviceContext, typename T>
class DepthwiseConvKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

X
xzl 已提交
373 374 375
    PADDLE_ENFORCE_EQ(
        output->dims()[1] % input->dims()[1], 0,
        "The output channels must be a multiple of the input channels");
Z
zlx 已提交
376 377 378 379 380 381 382
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");

    math::DepthwiseConvFunctor<DeviceContext, T> depthwiseConv;

    auto& dev_ctx = context.template device_context<DeviceContext>();
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    depthwiseConv(dev_ctx, *input, filter, strides, paddings, output);
  }
};

template <typename DeviceContext, typename T>
class DepthwiseConvGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));
    Tensor filter = *context.Input<Tensor>("Filter");

    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");

    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();

    math::DepthwiseConvInputGradFunctor<DeviceContext, T>
        depthwiseConvInputGrad;
    math::DepthwiseConvFilterGradFunctor<DeviceContext, T>
        depthwiseConvFilterGrad;

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, input_grad, static_cast<T>(0));
      depthwiseConvInputGrad(dev_ctx, *input, filter, *output_grad, strides,
                             paddings, input_grad);
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
      depthwiseConvFilterGrad(dev_ctx, *input, *output_grad, strides, paddings,
                              filter_grad);
    }
Z
zlx 已提交
427 428 429
  }
};

430 431
}  // namespace operators
}  // namespace paddle