concat_op.h 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <string>
18
#include <utility>
19
#include <vector>
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/op_registry.h"
C
chengduo 已提交
21
#include "paddle/fluid/operators/math/concat_and_split.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/operators/strided_memcpy.h"
23
#include "paddle/fluid/operators/utils.h"
24 25 26

namespace paddle {
namespace operators {
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
static inline framework::DDim ComputeAndCheckShape(
    const bool is_runtime, const std::vector<framework::DDim>& inputs_dims,
    const int axis) {
  const size_t n = inputs_dims.size();
  auto out_dims = inputs_dims[0];
  size_t in_zero_dims_size = out_dims.size();
  for (size_t i = 1; i < n; i++) {
    for (size_t j = 0; j < in_zero_dims_size; j++) {
      if (j == axis) {
        if (is_runtime) {
          out_dims[axis] += inputs_dims[i][j];
        } else {
          if (inputs_dims[i][j] == -1) {
            out_dims[axis] = -1;
          } else {
            out_dims[axis] += inputs_dims[i][j];
          }
        }
      } else {
        bool check_shape =
            is_runtime || (out_dims[j] > 0 && inputs_dims[i][j] > 0);
        if (check_shape) {
          // check all shape in run time
          PADDLE_ENFORCE_EQ(
              inputs_dims[0][j], inputs_dims[i][j],
              "ShapeError: Dimension %d in inputs' shapes must be equal. "
              "But recevied input[0]'s shape = "
              "[%s], input[%d]'s shape = [%s].",
              j, inputs_dims[0], i, inputs_dims[i]);
        }
      }
    }
  }
  return out_dims;
}
62

63
static inline int64_t ComputeAxis(int64_t axis, int64_t rank) {
64 65 66 67 68
  PADDLE_ENFORCE_EQ(
      axis >= -rank && axis < rank, true,
      platform::errors::InvalidArgument(
          "The axis is expected to be in range of [%d, %d), but got %d", -rank,
          rank, axis));
69 70 71 72 73 74
  if (axis < 0) {
    axis = axis + rank;
  }
  return axis > 0 ? axis : 0;
}

Q
QI JUN 已提交
75
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
76
class ConcatKernel : public framework::OpKernel<T> {
77 78 79
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto ins = ctx.MultiInput<framework::Tensor>("X");
C
chengduoZH 已提交
80
    framework::Tensor* out = ctx.Output<framework::Tensor>("Out");
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    PADDLE_ENFORCE_EQ(ins[0] != nullptr, true, "The input should not be null.");
    auto axis = ctx.Attr<int>("axis");
    bool need_resize_out_dims = false;
    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<framework::Tensor>("AxisTensor");
      axis = GetDataFromTensor<int>(axis_tensor)[0];
      need_resize_out_dims = true;
    }
    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));

    if (need_resize_out_dims) {
      const size_t n = ins.size();
      std::vector<framework::DDim> ins_dims(n);
      for (size_t i = 0; i < n; i++) {
        ins_dims[i] = ins[i]->dims();
      }

      framework::DDim out_dims = ComputeAndCheckShape(true, ins_dims, axis);
      out->Resize(out_dims);
    }
Y
Yancey1989 已提交
102 103
    auto place = ctx.GetPlace();
    out->mutable_data<T>(place);
C
chengduoZH 已提交
104

C
chengduoZH 已提交
105 106 107 108
    // Sometimes direct copies will be faster, this maybe need deeply analysis.
    if (axis == 0 && ins.size() < 10) {
      size_t output_offset = 0;
      for (auto* in : ins) {
109 110 111
        if (!in || in->numel() == 0UL) {
          continue;
        }
C
chengduoZH 已提交
112 113 114 115 116 117 118 119
        auto in_stride = framework::stride_numel(in->dims());
        auto out_stride = framework::stride_numel(out->dims());
        StridedNumelCopyWithAxis<T>(ctx.device_context(), axis,
                                    out->data<T>() + output_offset, out_stride,
                                    in->data<T>(), in_stride, in_stride[axis]);
        output_offset += in_stride[axis];
      }
    } else {
120
      std::vector<framework::Tensor> inputs;
C
chengduoZH 已提交
121
      for (size_t j = 0; j < ins.size(); ++j) {
122 123 124 125 126
        if (ins[j] && ins[j]->numel() > 0) {
          inputs.push_back(*ins[j]);
        } else {
          continue;
        }
C
chengduoZH 已提交
127 128 129 130
      }
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      paddle::operators::math::ConcatFunctor<DeviceContext, T> concat_functor;
      concat_functor(dev_ctx, inputs, static_cast<int>(axis), out);
131 132 133 134
    }
  }
};

Q
QI JUN 已提交
135
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
136
class ConcatGradKernel : public framework::OpKernel<T> {
137 138
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
Q
qiaolongfei 已提交
139 140
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
141
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
Q
qiaolongfei 已提交
142
    auto out_var_names = ctx.Outputs(framework::GradVarName("X"));
143 144 145 146 147 148 149 150 151 152 153 154
    auto outs =
        ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));

    {
      auto dx = outs;
      auto x = ins;
      for (size_t i = 0; i < dx.size(); ++i) {
        if (dx[i] != nullptr) {
          dx[i]->set_lod(x[i]->lod());
        }
      }
    }
155
    PADDLE_ENFORCE_EQ(ins[0] != nullptr, true, "The input should not be null.");
Y
Yancey1989 已提交
156

157 158 159 160 161 162 163
    auto axis = ctx.Attr<int>("axis");
    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<framework::Tensor>("AxisTensor");
      axis = GetDataFromTensor<int>(axis_tensor)[0];
    }
    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));
Q
qiaolongfei 已提交
164 165 166
    // get output tensor that the name is not kEmptyVarName
    std::vector<framework::Tensor*> outputs;
    for (size_t j = 0; j < outs.size(); ++j) {
167 168
      if (out_var_names[j] != framework::kEmptyVarName &&
          outs[j]->numel() != 0UL) {
Q
qiaolongfei 已提交
169 170 171 172 173 174
        outs[j]->mutable_data<T>(ctx.GetPlace());
        outputs.push_back(outs[j]);
      } else {
        outputs.push_back(nullptr);
      }
    }
C
chengduo 已提交
175
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
Q
qiaolongfei 已提交
176

C
chengduoZH 已提交
177 178
    // Sometimes direct copies will be faster, this maybe need deeply analysis.
    if (axis == 0 && outs.size() < 10) {
C
chengduo 已提交
179 180 181
      std::vector<const framework::Tensor*> ref_shape;
      ref_shape.insert(ref_shape.begin(), ins.begin(), ins.end());
      StridedMemcpyWithAxis0<T>(dev_ctx, *out_grad, ref_shape, &outputs);
C
chengduoZH 已提交
182
    } else {
C
chengduo 已提交
183 184 185
      math::SplitFunctor<DeviceContext, T> split_functor;
      split_functor(dev_ctx, *out_grad, ctx.MultiInput<framework::Tensor>("X"),
                    static_cast<int>(axis), &outputs);
C
chengduoZH 已提交
186
    }
187 188 189 190 191
  }
};

}  // namespace operators
}  // namespace paddle