convolution.h 6.7 KB
Newer Older
Z
zhangkaihuo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <set>

#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
26
#include "paddle/phi/kernels/sparse/convolution_kernel.h"
Z
zhangkaihuo 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

namespace phi {
namespace sparse {

// such as: kernel(3, 3, 3), kernel_size = 27
// counter_per_weight: (kernel_size)
// TODO(zhangkaihuo): optimize performance with multithreading
template <typename T, typename Context>
void ProductRuleBook(const Context& dev_ctx,
                     const SparseCooTensor& x,
                     const DenseTensor& kernel,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     const std::vector<int>& strides,
                     const DDim& out_dims,
                     DenseTensor* rulebook,
                     DenseTensor* counter_per_kernel) {
  const auto& kernel_dims = kernel.dims();
  const int64_t non_zero_num = x.nnz();
  const auto& non_zero_indices = x.non_zero_indices();
  const int* indices_ptr = non_zero_indices.data<int>();
  int* counter_ptr = counter_per_kernel->data<int>();
  int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  memset(counter_ptr, 0, kernel_size * sizeof(int));

  int rulebook_len = 0;
  // calc the rulebook_len
  const auto& x_dims = x.dims();
  const Dims4D c_x_dims(x_dims[0], x_dims[3], x_dims[2], x_dims[1]);
  const Dims4D c_kernel_dims(1, kernel_dims[2], kernel_dims[1], kernel_dims[0]);
  const Dims4D c_out_dims(out_dims[0], out_dims[3], out_dims[2], out_dims[1]);
  const Dims4D c_paddings(1, paddings[2], paddings[1], paddings[0]);
  const Dims4D c_strides(1, strides[2], strides[1], strides[0]);
  const Dims4D c_dilations(1, dilations[2], dilations[1], dilations[0]);

  auto f_calc_rulebook = [&](int* rulebook_ptr) {
    int kernel_index = 0, rulebook_index = 0;
    for (int kz = 0; kz < kernel_dims[0]; kz++) {
      for (int ky = 0; ky < kernel_dims[1]; ky++) {
        for (int kx = 0; kx < kernel_dims[2]; kx++) {
          for (int64_t i = 0; i < non_zero_num; i++) {
            int batch = indices_ptr[i];
            int in_z = indices_ptr[i + non_zero_num];
            int in_y = indices_ptr[i + 2 * non_zero_num];
            int in_x = indices_ptr[i + 3 * non_zero_num];
            int out_z = (in_z + paddings[0] - kz * dilations[0]) / strides[0];
            int out_y = (in_y + paddings[1] - ky * dilations[1]) / strides[1];
            int out_x = (in_x + paddings[2] - kx * dilations[2]) / strides[2];
            if (Check(c_x_dims,
                      c_kernel_dims,
                      c_paddings,
                      c_dilations,
                      c_strides,
                      in_x,
                      in_y,
                      in_z,
                      kx,
                      ky,
                      kz)) {
              if (rulebook_ptr == nullptr) {
                counter_ptr[kernel_index] += 1;
                ++rulebook_len;
              } else {
                rulebook_ptr[rulebook_index] = kernel_index;
                rulebook_ptr[rulebook_index + rulebook_len] = i;  // in_i
                rulebook_ptr[rulebook_index + rulebook_len * 2] =
                    PointToIndex<DDim>(
                        batch, out_x, out_y, out_z, out_dims);  // out_index
                ++rulebook_index;
              }
            }
          }
          ++kernel_index;
        }
      }
    }
  };

  f_calc_rulebook(nullptr);
  // alloc the rulebook
107 108 109
  DenseTensorMeta rulebook_meta(
      DataType::INT32, {3, rulebook_len}, DataLayout::NCHW);
  rulebook->set_meta(rulebook_meta);
Z
zhangkaihuo 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  dev_ctx.Alloc(rulebook, rulebook->dtype(), rulebook->numel() * sizeof(int));
  int* rulebook_ptr = rulebook->data<int>();
  f_calc_rulebook(rulebook_ptr);
}

template <typename T, typename Context>
void UpdateRulebookAndOutIndex(const Context& dev_ctx,
                               const SparseCooTensor& x,
                               const int kernel_size,
                               const int out_channels,
                               const DDim& out_dims,
                               DenseTensor* rulebook,
                               SparseCooTensor* out) {
  std::set<int> out_indexs;
  int n = rulebook->dims()[1];
  int* rulebook_ptr = rulebook->data<int>();
  for (int i = 0; i < n; i++) {
    out_indexs.insert(rulebook_ptr[i + n * 2]);
  }

  int out_non_zero_num = out_indexs.size();
  const int64_t sparse_dim = 4;
  DenseTensorMeta indices_meta(
      DataType::INT32, {sparse_dim, out_non_zero_num}, DataLayout::NCHW);
  DenseTensorMeta values_meta(
      x.dtype(), {out_non_zero_num, out_channels}, x.layout());
  phi::DenseTensor out_indices = phi::Empty(dev_ctx, std::move(indices_meta));
  phi::DenseTensor out_values = phi::Empty(dev_ctx, std::move(values_meta));
  int* out_indices_ptr = out_indices.data<int>();
  int i = 0;
  for (auto it = out_indexs.begin(); it != out_indexs.end(); it++, i++) {
    const int index = *it;
    int batch, x, y, z;
    IndexToPoint<DDim>(index, out_dims, &batch, &x, &y, &z);
    out_indices_ptr[i] = batch;
    out_indices_ptr[i + out_non_zero_num] = z;
    out_indices_ptr[i + out_non_zero_num * 2] = y;
    out_indices_ptr[i + out_non_zero_num * 3] = x;
  }
  for (i = 0; i < n; i++) {
    int out_index = rulebook_ptr[i + n * 2];
    rulebook_ptr[i + n * 2] =
        std::distance(out_indexs.begin(), out_indexs.find(out_index));
  }

  out->SetMember(out_indices, out_values, out_dims, true);
}

template <typename T>
void Gather(
    const T* x, const int* indexs, const int n, const int channels, T* out) {
  for (int i = 0; i < n; i++) {
    int real_i = indexs[i];
    memcpy(out + i * channels, x + real_i * channels, channels * sizeof(T));
  }
}

template <typename T>
void Scatter(
    const T* x, const int* indexs, const int n, const int channels, T* out) {
  for (int i = 0; i < n; i++) {
    int real_i = indexs[i];
    for (int j = 0; j < channels; j++) {
      out[real_i * channels + j] += x[i * channels + j];
    }
  }
}

}  // namespace sparse
}  // namespace phi