gpu_launch_config.h 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14

15
// Used for compute gpu launch parameter
16 17 18

#pragma once

19
#ifdef PADDLE_WITH_CUDA
20

21 22 23 24 25
#include <cuda_runtime.h>
#include <stddef.h>
#include <algorithm>
#include <string>
#include <vector>
26 27 28 29

namespace paddle {
namespace platform {

30
inline int DivUp(int a, int b) { return (a + b - 1) / b; }
31

32 33 34 35
struct GpuLaunchConfig {
  dim3 theory_thread_count = dim3(1, 1, 1);
  dim3 thread_per_block = dim3(1, 1, 1);
  dim3 block_per_grid = dim3(1, 1, 1);
36 37
};

38 39
inline GpuLaunchConfig GetGpuLaunchConfig1D(
    const platform::CUDADeviceContext& context, int element_count) {
40 41 42 43 44
  PADDLE_ENFORCE_GT(element_count, 0,
                    platform::errors::InvalidArgument(
                        "element count should be greater than 0,"
                        " but received value is: %d.",
                        element_count));
45 46 47

  const int theory_thread_count = element_count;
  // Get Max threads in all SM
48
  int max_physical_threads = context.GetMaxPhysicalThreadCount();
49 50
  int sm = context.GetSMCount();

51
  // Compute physical threads we need, should small than max sm threads
52
  const int physical_thread_count =
53
      std::min(max_physical_threads, theory_thread_count);
54 55 56 57

  // Need get from device
  const int thread_per_block = std::min(1024, context.GetMaxThreadsPerBlock());
  const int block_count =
58
      std::min(DivUp(physical_thread_count, thread_per_block), sm);
59

60 61 62 63 64 65 66 67
  GpuLaunchConfig config;
  config.theory_thread_count.x = theory_thread_count;
  config.thread_per_block.x = thread_per_block;
  config.block_per_grid.x = block_count;
  return config;
}

inline GpuLaunchConfig GetGpuLaunchConfig2D(
68 69 70 71 72 73 74 75 76
    const platform::CUDADeviceContext& context, int x_dim, int y_dim) {
  PADDLE_ENFORCE_GT(x_dim, 0, platform::errors::InvalidArgument(
                                  "x dim number should greater than 0,"
                                  " but received value is: %d",
                                  x_dim));
  PADDLE_ENFORCE_GT(y_dim, 0, platform::errors::InvalidArgument(
                                  "y dim number should greater than 0,"
                                  " but received value is: %d",
                                  y_dim));
77 78

  const int kThreadsPerBlock = 256;
79
  int block_cols = std::min(x_dim, kThreadsPerBlock);
80 81 82 83
  int block_rows = std::max(kThreadsPerBlock / block_cols, 1);

  int max_physical_threads = context.GetMaxPhysicalThreadCount();
  const int max_blocks = std::max(max_physical_threads / kThreadsPerBlock, 1);
84

85 86
  GpuLaunchConfig config;
  // Noticed, block size is not align to 32, if needed do it yourself.
87
  config.theory_thread_count = dim3(x_dim, y_dim, 1);
88 89
  config.thread_per_block = dim3(block_cols, block_rows, 1);

90 91
  int grid_x = std::min(DivUp(x_dim, block_cols), max_blocks);
  int grid_y = std::min(max_blocks / grid_x, std::max(y_dim / block_rows, 1));
92 93

  config.block_per_grid = dim3(grid_x, grid_y, 1);
94 95 96
  return config;
}

97 98
// TODO(wangchaochaohu): 3D will add later

99 100
}  // namespace platform
}  // namespace paddle
101 102

#endif