fused_embedding_seq_pool_op.cc 7.4 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fused_embedding_seq_pool_op.h"
#include "paddle/fluid/framework/var_type_inference.h"

namespace paddle {
namespace operators {

21
class FusedEmbeddingSeqPoolOp : public framework::OperatorWithKernel {
M
minqiyang 已提交
22 23 24 25 26
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("W"),
27
                   "Input W of FusedEmbeddingSeqPoolOp should not be null.");
M
minqiyang 已提交
28
    PADDLE_ENFORCE(ctx->HasInput("Ids"),
29
                   "Input Ids of FusedEmbeddingSeqPoolOp should not be null.");
M
minqiyang 已提交
30
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
31
                   "Output of FusedEmbeddingSeqPoolOp should not be null.");
M
minqiyang 已提交
32 33 34

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");
35
    const std::string& combiner = ctx->Attrs().Get<std::string>("combiner");
M
minqiyang 已提交
36 37

    PADDLE_ENFORCE_EQ(table_dims.size(), 2);
38 39 40
    PADDLE_ENFORCE_GE(ids_dims.size(), 1u,
                      "The dim size of the 'Ids' tensor must greater than 1.");
    PADDLE_ENFORCE_EQ(ids_dims[ids_dims.size() - 1], 1,
M
minqiyang 已提交
41
                      "The last dimension of the 'Ids' tensor must be 1.");
42 43
    // we only support sum now
    PADDLE_ENFORCE_EQ(combiner, "sum");
M
minqiyang 已提交
44

45 46 47
    if (ctx->IsRuntime()) {
      Variable* ids_var = boost::get<Variable*>(ctx->GetInputVarPtrs("Ids")[0]);
      const auto& ids_lod = ids_var->Get<LoDTensor>().lod();
M
minqiyang 已提交
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
      // in run time, the LoD of ids must be 1
      PADDLE_ENFORCE(ids_lod.size(), 1u,
                     "The LoD level of Input(Ids) must be 1");
      PADDLE_ENFORCE_GE(ids_lod[0].size(), 1u, "The LoD could NOT be empty");

      size_t batch_size = ids_lod[0].size() - 1;

      // in run time, the shape from Ids -> output
      // should be [seq_length, 1] -> [batch_size, embedding_size]
      ctx->SetOutputDim("Out",
                        framework::make_ddim({batch_size, table_dims[1]}));
    } else {
      // in compile time, the lod level of ids must be 1
      VarDesc* ids_desc = boost::get<VarDesc*>(ctx->GetInputVarPtrs("Ids")[0]);
      PADDLE_ENFORCE_EQ(ids_desc->GetLoDLevel(), 1);

      // in compile time, the shape from Ids -> output
      // should be [-1, 1] -> [-1, embedding_size]
      ctx->SetOutputDim("Out", framework::make_ddim({-1, table_dims[1]}));
M
minqiyang 已提交
68 69 70 71 72 73 74 75 76 77 78
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("W"));
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

79
class FusedEmbeddingSeqPoolOpMaker : public framework::OpProtoAndCheckerMaker {
M
minqiyang 已提交
80 81 82 83 84 85 86 87 88 89
 public:
  void Make() override {
    AddInput("W",
             "(Tensor) The input represents embedding tensors, "
             "which is a learnable parameter.");
    AddInput("Ids",
             "An input with type int32 or int64 "
             "contains the ids to be looked up in W. "
             "The last dimension size must be 1.");
    AddOutput("Out", "The lookup results, which have the same type as W.");
90 91 92 93 94 95
    AddAttr<std::string>("combiner",
                         "(string, default sum) "
                         "A string specifying the reduction op. Currently sum "
                         "are supported, sum computes the weighted sum of the "
                         "embedding results for each row.")
        .SetDefault("sum");
M
minqiyang 已提交
96 97 98 99 100 101
    // NOTE(minqiyang): grad_inplace is an temporal attribute,
    // please do NOT set this attribute in python layer.
    AddAttr<bool>("grad_inplace",
                  "(boolean, default false) "
                  "If the grad op reuse the input's variable.")
        .SetDefault(false);
M
minqiyang 已提交
102 103 104 105 106
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update.")
        .SetDefault(false);
    AddComment(R"DOC(
107 108 109
FusedEmbeddingSeqPool Operator.

Computes embeddings for the given ids and weights.
M
minqiyang 已提交
110 111

This operator is used to perform lookups on the parameter W,
112 113
then computes the weighted sum of the lookups results for each row
and concatenated into a dense tensor.
M
minqiyang 已提交
114

115 116
The input Ids should carry the LoD (Level of Details) information.
And the output will change the LoD information with input Ids.
M
minqiyang 已提交
117 118 119 120 121

)DOC");
  }
};

122
class FusedEmbeddingSeqPoolOpGradDescMaker
M
minqiyang 已提交
123 124 125 126 127
    : public framework::DefaultGradOpDescMaker<true> {
  using ::paddle::framework::DefaultGradOpDescMaker<
      true>::DefaultGradOpDescMaker;

 protected:
128 129 130
  virtual std::string GradOpType() const {
    return "fused_embedding_seq_pool_grad";
  }
M
minqiyang 已提交
131 132
};

133
class FusedEmbeddingSeqPoolOpGrad : public framework::OperatorWithKernel {
M
minqiyang 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("W"));
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

150 151
class FusedEmbeddingSeqPoolOpGradVarTypeInference
    : public framework::VarTypeInference {
M
minqiyang 已提交
152 153 154 155 156 157 158
 public:
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
    auto out_var_name = op_desc.Output(framework::GradVarName("W")).front();
    auto attr = op_desc.GetAttr("is_sparse");
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
159 160
      VLOG(3) << "fused_embedding_seq_pool_grad op "
              << framework::GradVarName("W") << " is set to SelectedRows";
M
minqiyang 已提交
161 162 163
      block->Var(out_var_name)
          ->SetType(framework::proto::VarType::SELECTED_ROWS);
    } else {
164 165
      VLOG(3) << "fused_embedding_seq_pool_grad op "
              << framework::GradVarName("W") << " is set to LoDTensor";
M
minqiyang 已提交
166 167 168 169 170 171 172 173 174 175
      block->Var(out_var_name)->SetType(framework::proto::VarType::LOD_TENSOR);
    }
    block->Var(out_var_name)->SetDataType(block->Var("W")->GetDataType());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
176 177 178 179 180 181 182 183 184 185 186 187 188
REGISTER_OPERATOR(fused_embedding_seq_pool, ops::FusedEmbeddingSeqPoolOp,
                  ops::FusedEmbeddingSeqPoolOpGradDescMaker,
                  ops::FusedEmbeddingSeqPoolOpMaker);
REGISTER_OPERATOR(fused_embedding_seq_pool_grad,
                  ops::FusedEmbeddingSeqPoolOpGrad,
                  ops::FusedEmbeddingSeqPoolOpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(fused_embedding_seq_pool,
                       ops::FusedEmbeddingSeqPoolKernel<float>,
                       ops::FusedEmbeddingSeqPoolKernel<double>);
REGISTER_OP_CPU_KERNEL(fused_embedding_seq_pool_grad,
                       ops::FusedEmbeddingSeqPoolGradKernel<float>,
                       ops::FusedEmbeddingSeqPoolGradKernel<double>);