sample_trainer_config_branch_net.conf 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer_config_helpers import *

################################### Data Configuration ###################################
TrainData(ProtoData(files = "trainer/tests/mnist.list"))
################################### Algorithm Configuration ###################################
20
settings(batch_size = 128,
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
         learning_method = MomentumOptimizer(momentum=0.5, sparse=False))
################################### Network Configuration ###################################
data = data_layer(name ="input", size=784)

tmp = img_conv_layer(input=data,
            num_channels=1,
            filter_size=3,
            num_filters=32,
            padding=1,
            shared_biases=True,
            act=ReluActivation())

a1 = img_conv_layer(input=tmp,
            filter_size=1,
            num_filters=32,
            padding=0,
            shared_biases=True,
            act=ReluActivation())

a2 = img_conv_layer(input=tmp,
            filter_size=3,
            num_filters=32,
            padding=1,
            shared_biases=True,
            act=ReluActivation())

47 48 49
tmp = addto_layer(input=[a1, a2],
            act=ReluActivation(),
            bias_attr=False)
50 51 52 53 54 55 56 57 58

tmp = img_pool_layer(input=tmp,
            pool_size=3,
            stride=2,
            padding=1,
            pool_type=AvgPooling())

b1 = img_conv_layer(input=tmp,
            filter_size=3,
59
            num_filters=32,
60 61 62 63 64 65
            padding=1,
            shared_biases=True,
            act=ReluActivation())

b1 = img_pool_layer(input=b1,
            pool_size=3,
66 67
            stride=2,
            padding=0,
68 69 70
            pool_type=MaxPooling())

b2 = img_conv_layer(input=tmp,
71
            filter_size=3,
72
            num_filters=64,
73
            padding=1,
74 75 76 77 78
            shared_biases=True,
            act=ReluActivation())

b2 = img_pool_layer(input=b2,
            pool_size=5,
79 80
            stride=2,
            padding=1,
81 82
            pool_type=MaxPooling())

83
tmp = concat_layer(input=[b1, b2])
84 85

tmp = img_pool_layer(input=tmp,
86
            num_channels=96,
87 88 89 90 91
            pool_size=3,
            stride=2,
            padding=1,
            pool_type=MaxPooling())

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
tmp = img_conv_layer(input=tmp,
            filter_size=3,
            num_filters=32,
            padding=1,
            shared_biases=True,
            act=LinearActivation(),
            bias_attr=False)

tmp = batch_norm_layer(input=tmp,
            use_global_stats=False,
            act=ReluActivation())

c1 = img_conv_layer(input=tmp,
            filter_size=1,
            num_filters=32,
            padding=0,
            shared_biases=True,
            act=ReluActivation())

c2 = img_conv_layer(input=tmp,
            filter_size=3,
            num_filters=32,
            padding=1,
            shared_biases=True,
            act=ReluActivation())

tmp = addto_layer(input=[c1, c2],
            act=ReluActivation(),
            bias_attr=False)

122 123 124 125 126 127 128 129 130 131 132 133
tmp = fc_layer(input=tmp, size=64,
            bias_attr=False,
            act=TanhActivation())

output = fc_layer(input=tmp, size=10,
            bias_attr=True,
            act=SoftmaxActivation())

lbl = data_layer(name ="label", size=10)

cost = classification_cost(input=output, label=lbl)
outputs(cost)