reduce_and_gather.h 3.3 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <algorithm>
#include <map>
#include <vector>
#include "paddle/fluid/framework/details/reduce_and_gather.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/selected_rows.h"
namespace paddle {
namespace framework {
namespace details {

struct ReduceLoDTensor {
C
chengduoZH 已提交
27
  const std::vector<const LoDTensor *> &src_tensors_;
C
chengduoZH 已提交
28 29
  LoDTensor &dst_tensor_;

C
chengduoZH 已提交
30
  ReduceLoDTensor(const std::vector<const LoDTensor *> &src, LoDTensor *dst)
C
chengduoZH 已提交
31 32 33 34 35
      : src_tensors_(src), dst_tensor_(*dst) {}

  template <typename T>
  void operator()() const {
    PADDLE_ENFORCE(!src_tensors_.empty());
C
chengduoZH 已提交
36
    auto &t0 = *src_tensors_[0];
C
chengduoZH 已提交
37 38 39
    PADDLE_ENFORCE_NE(t0.numel(), 0);
    dst_tensor_.Resize(t0.dims());
    T *dst = dst_tensor_.mutable_data<T>(platform::CPUPlace());
40 41 42
    if (dst != t0.data<T>()) {
      std::copy(t0.data<T>(), t0.data<T>() + t0.numel(), dst);
    }
C
chengduoZH 已提交
43 44

    for (size_t i = 1; i < src_tensors_.size(); ++i) {
C
chengduoZH 已提交
45
      auto &t = *src_tensors_[i];
C
chengduoZH 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
      PADDLE_ENFORCE_EQ(t.dims(), t0.dims());
      PADDLE_ENFORCE_EQ(t.type(), t0.type());
      std::transform(t.data<T>(), t.data<T>() + t.numel(), dst, dst,
                     [](T a, T b) -> T { return a + b; });
    }
  }
};

inline void GatherSelectedRows(
    const std::vector<const SelectedRows *> &src_selecte_rows_,
    const std::vector<platform::Place> &in_places,
    const std::unordered_map<platform::Place, platform::DeviceContext *,
                             platform::PlaceHash> &dev_ctxes,
    const platform::Place &out_place, SelectedRows *dst_selecte_rows) {
  PADDLE_ENFORCE(!src_selecte_rows_.empty());

  std::vector<Tensor> in_tensors;
  std::vector<int64_t> out_rows;

  for (auto in_sr_ptr : src_selecte_rows_) {
    auto &in_sr = *in_sr_ptr;
    in_tensors.emplace_back(in_sr.value());
    out_rows.insert(out_rows.end(), in_sr.rows().begin(), in_sr.rows().end());
  }

  auto &pre_in = src_selecte_rows_[0];

  auto &dst_tensor = *dst_selecte_rows;
  dst_tensor.set_height(pre_in->height());
  dst_tensor.set_rows(out_rows);
  size_t rows = out_rows.size();
  DDim out_dim = pre_in->GetCompleteDims();
  out_dim[0] = static_cast<int64_t>(rows);
  dst_tensor.mutable_value()->Resize(out_dim);
  dst_tensor.mutable_value()->mutable_data(out_place, pre_in->value().type());
  Tensor *out_tensor = dst_tensor.mutable_value();

  // copy
  int s = 0, e = 0;
  for (size_t j = 0; j < in_tensors.size(); ++j) {
    e += in_tensors[j].dims()[0];
    auto sub_out = out_tensor->Slice(s, e);
    paddle::framework::TensorCopy(in_tensors[j], out_place,
                                  *(dev_ctxes.at(in_places[j])), &sub_out);
    s = e;
  }
}

}  // namespace details
}  // namespace framework
}  // namespace paddle