modified_huber_loss_op.cc 4.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/modified_huber_loss_op.h"
16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

class ModifiedHuberLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
25 26
    PADDLE_ENFORCE(ctx->HasInput("X"), "X must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Y must be initialized.");
27

Q
Qiao Longfei 已提交
28 29
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
30

Q
Qiao Longfei 已提交
31
    PADDLE_ENFORCE_EQ(x_dims.size(), 2, "The tensor rank of X must be 2.");
P
phlrain 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(x_dims, y_dims,
                        "The shape of X and Y must be the same.");
    } else {
      if (x_dims[0] != -1 && y_dims[0] != -1) {
        PADDLE_ENFORCE_EQ(x_dims[0], y_dims[0],
                          "The dim 0 of X and Y must be the same.");
      }

      if (x_dims[1] != -1 && y_dims[1] != -1) {
        PADDLE_ENFORCE_EQ(x_dims[1], y_dims[1],
                          "The dim 1 of X and Y must be the same.");
      }
    }

    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(x_dims[1], 1, "The 2nd dimension of X must be 1.");
    }
50

Q
Qiao Longfei 已提交
51 52
    ctx->SetOutputDim("IntermediateVal", x_dims);
    ctx->SetOutputDim("Out", {x_dims[0], 1});
53 54 55 56 57
  }
};

class ModifiedHuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
58
  void Make() override {
59
    AddInput("X",
K
kexinzhao 已提交
60
             "The input tensor of modified huber loss op. "
61 62
             "X is 2-D tensor with shape [batch_size, 1].");
    AddInput("Y",
K
kexinzhao 已提交
63 64
             "The target labels of modified huber loss op. "
             "The shape of Y is the same as X. Values of Y must be 0 or 1.");
65
    AddOutput("IntermediateVal",
Y
yangyaming 已提交
66 67 68
              "Variable to save intermediate result which will be reused in "
              "backward processing.")
        .AsIntermediate();
69
    AddOutput("Out", "Classification loss for X.");
Y
yangyaming 已提交
70
    AddComment(R"DOC(
K
kexinzhao 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
Modified Huber Loss Operator.

This operator is used in binary classification problem. The shape of
input X and target Y are both [N, 1] and so is the shape of the output loss.
Since target Y is not differentiable, calculating gradient for Y is illegal.
The formula of modified huber loss is:

$$
L(y, f(x)) = 
\begin{cases}
(\max(0, 1 - yf(x)))^2,  \text{if} \  yf(x) >= -1    \\
             -4yf(x),    \quad \text{otherwise}
\end{cases}
$$

Make sure the values of target label Y are in {0, 1} here. This operator will
87
scale values of Y to {-1, +1} when computing losses and gradients.
K
kexinzhao 已提交
88

Y
yangyaming 已提交
89
)DOC");
90 91 92 93 94 95 96
  }
};

class ModifiedHuberLossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

97
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
98 99 100 101 102 103 104 105 106 107
    PADDLE_ENFORCE(ctx->HasInput("X"), "X must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Y must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("IntermediateVal"),
                   "Intermediate value must not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@Grad) must not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto intermediate_dims = ctx->GetInputDim("IntermediateVal");
    auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out"));
108

P
phlrain 已提交
109 110 111 112 113 114 115
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(
          intermediate_dims, x_dims,
          "The shape of X and intermediate value must be the same.");
      PADDLE_ENFORCE_EQ(out_grad_dims, x_dims,
                        "The shape of Input(Out@Grad) and X must be the same.");
    }
116

Q
Qiao Longfei 已提交
117 118 119
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
120 121 122 123 124 125 126
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
127 128
REGISTER_OPERATOR(modified_huber_loss, ops::ModifiedHuberLossOp,
                  ops::ModifiedHuberLossOpMaker,
129 130
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(modified_huber_loss_grad, ops::ModifiedHuberLossGradOp);
131 132 133

REGISTER_OP_CPU_KERNEL(
    modified_huber_loss,
Q
QI JUN 已提交
134
    ops::ModifiedHuberLossKernel<paddle::platform::CPUDeviceContext, float>);
135 136
REGISTER_OP_CPU_KERNEL(modified_huber_loss_grad,
                       ops::ModifiedHuberLossGradCPUKernel<float>);