test_cumsum_op.py 9.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
E
emailweixu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

E
emailweixu 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
20
import paddle
21 22 23
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
24 25 26 27 28


class TestCumsumOp(unittest.TestCase):
    def run_cases(self):
        data_np = np.arange(12).reshape(3, 4)
Z
Zhou Wei 已提交
29
        data = paddle.to_tensor(data_np)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

        y = paddle.cumsum(data)
        z = np.cumsum(data_np)
        self.assertTrue(np.array_equal(z, y.numpy()))

        y = paddle.cumsum(data, axis=0)
        z = np.cumsum(data_np, axis=0)
        self.assertTrue(np.array_equal(z, y.numpy()))

        y = paddle.cumsum(data, axis=-1)
        z = np.cumsum(data_np, axis=-1)
        self.assertTrue(np.array_equal(z, y.numpy()))

        y = paddle.cumsum(data, dtype='float64')
        self.assertTrue(y.dtype == core.VarDesc.VarType.FP64)

        y = paddle.cumsum(data, dtype=np.int32)
        self.assertTrue(y.dtype == core.VarDesc.VarType.INT32)

        y = paddle.cumsum(data, axis=-2)
        z = np.cumsum(data_np, axis=-2)
        self.assertTrue(np.array_equal(z, y.numpy()))

    def run_static(self, use_gpu=False):
        with fluid.program_guard(fluid.Program()):
            data_np = np.random.random((100, 100)).astype(np.float32)
56
            x = paddle.static.data('X', [100, 100])
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
            y = paddle.cumsum(x)
            y2 = paddle.cumsum(x, axis=0)
            y3 = paddle.cumsum(x, axis=-1)
            y4 = paddle.cumsum(x, dtype='float64')
            y5 = paddle.cumsum(x, dtype=np.int32)
            y6 = paddle.cumsum(x, axis=-2)

            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            out = exe.run(feed={'X': data_np},
                          fetch_list=[
                              y.name, y2.name, y3.name, y4.name, y5.name,
                              y6.name
                          ])

            z = np.cumsum(data_np)
            self.assertTrue(np.allclose(z, out[0]))
            z = np.cumsum(data_np, axis=0)
            self.assertTrue(np.allclose(z, out[1]))
            z = np.cumsum(data_np, axis=-1)
            self.assertTrue(np.allclose(z, out[2]))
            self.assertTrue(out[3].dtype == np.float64)
            self.assertTrue(out[4].dtype == np.int32)
            z = np.cumsum(data_np, axis=-2)
            self.assertTrue(np.allclose(z, out[5]))

    def test_cpu(self):
85 86 87
        paddle.disable_static(paddle.fluid.CPUPlace())
        self.run_cases()
        paddle.enable_static()
88 89 90 91 92 93

        self.run_static()

    def test_gpu(self):
        if not fluid.core.is_compiled_with_cuda():
            return
94 95 96
        paddle.disable_static(paddle.fluid.CUDAPlace(0))
        self.run_cases()
        paddle.enable_static()
97 98 99 100 101

        self.run_static(use_gpu=True)

    def test_name(self):
        with fluid.program_guard(fluid.Program()):
102
            x = paddle.static.data('x', [3, 4])
103 104
            y = paddle.cumsum(x, name='out')
            self.assertTrue('out' in y.name)
E
emailweixu 已提交
105 106 107 108 109 110 111 112 113 114


class TestSumOp1(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2}
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=2)}

    def test_check_output(self):
115
        self.check_output()
E
emailweixu 已提交
116 117

    def test_check_grad(self):
118
        self.check_grad(['X'], 'Out')
E
emailweixu 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132


class TestSumOp2(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': -1, 'reverse': True}
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {
            'Out': np.flip(
                np.flip(
                    self.inputs['X'], axis=2).cumsum(axis=2), axis=2)
        }

    def test_check_output(self):
133
        self.check_output()
E
emailweixu 已提交
134 135

    def test_check_grad(self):
136
        self.check_grad(['X'], 'Out')
E
emailweixu 已提交
137 138 139 140 141 142 143 144 145 146


class TestSumOp3(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 1}
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=1)}

    def test_check_output(self):
147
        self.check_output()
E
emailweixu 已提交
148 149

    def test_check_grad(self):
150
        self.check_grad(['X'], 'Out')
E
emailweixu 已提交
151 152 153 154 155 156 157 158 159 160


class TestSumOp4(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 0}
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=0)}

    def test_check_output(self):
161
        self.check_output()
E
emailweixu 已提交
162 163

    def test_check_grad(self):
164
        self.check_grad(['X'], 'Out')
E
emailweixu 已提交
165 166 167 168 169


class TestSumOp5(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
Z
zhupengyang 已提交
170
        self.inputs = {'X': np.random.random((5, 20)).astype("float64")}
E
emailweixu 已提交
171 172 173
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=1)}

    def test_check_output(self):
174
        self.check_output()
E
emailweixu 已提交
175 176

    def test_check_grad(self):
177
        self.check_grad(['X'], 'Out')
E
emailweixu 已提交
178 179 180 181 182


class TestSumOp7(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
Z
zhupengyang 已提交
183
        self.inputs = {'X': np.random.random((100)).astype("float64")}
E
emailweixu 已提交
184 185 186
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=0)}

    def test_check_output(self):
187
        self.check_output()
E
emailweixu 已提交
188 189

    def test_check_grad(self):
190
        self.check_grad(['X'], 'Out')
E
emailweixu 已提交
191 192


193
class TestSumOpExclusive1(OpTest):
E
emailweixu 已提交
194 195 196
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, "exclusive": True}
197
        a = np.random.random((4, 5, 65)).astype("float64")
E
emailweixu 已提交
198 199 200 201
        self.inputs = {'X': a}
        self.outputs = {
            'Out': np.concatenate(
                (np.zeros(
202
                    (4, 5, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
E
emailweixu 已提交
203 204 205 206
                axis=2)
        }

    def test_check_output(self):
207
        self.check_output()
E
emailweixu 已提交
208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

class TestSumOpExclusive2(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, "exclusive": True}
        a = np.random.random((1, 1, 888)).astype("float64")
        self.inputs = {'X': a}
        self.outputs = {
            'Out': np.concatenate(
                (np.zeros(
                    (1, 1, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
                axis=2)
        }

    def test_check_output(self):
        self.check_output()


class TestSumOpExclusive3(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, "exclusive": True}
        a = np.random.random((4, 5, 888)).astype("float32")
        self.inputs = {'X': a}
        self.outputs = {
            'Out': np.concatenate(
                (np.zeros(
                    (4, 5, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
                axis=2)
        }

    def test_check_output(self):
        self.check_output()


class TestSumOpExclusive4(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, "exclusive": True}
        a = np.random.random((1, 1, 3049)).astype("float64")
        self.inputs = {'X': a}
        self.outputs = {
            'Out': np.concatenate(
                (np.zeros(
                    (1, 1, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
                axis=2)
        }

    def test_check_output(self):
        self.check_output()


class TestSumOpExclusive5(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, "exclusive": True}
        a = np.random.random((4, 5, 3096)).astype("float64")
        self.inputs = {'X': a}
        self.outputs = {
            'Out': np.concatenate(
                (np.zeros(
                    (4, 5, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
                axis=2)
        }

    def test_check_output(self):
        self.check_output()


class TestSumOpReverseExclusive(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, 'reverse': True, "exclusive": True}
        a = np.random.random((4, 5, 6)).astype("float64")
        self.inputs = {'X': a}
        a = np.flip(a, axis=2)
        self.outputs = {
            'Out': np.concatenate(
                (np.flip(
                    a[:, :, :-1].cumsum(axis=2), axis=2), np.zeros(
                        (4, 5, 1), dtype=np.float64)),
                axis=2)
        }

    def test_check_output(self):
        self.check_output()
E
emailweixu 已提交
295 296


297 298 299 300 301
class BadInputTest(unittest.TestCase):
    def test_error(self):
        with fluid.program_guard(fluid.Program()):

            def test_bad_x():
302
                data = [1, 2, 4]
303 304 305 306 307
                result = fluid.layers.cumsum(data, axis=0)

            self.assertRaises(TypeError, test_bad_x)


E
emailweixu 已提交
308 309
if __name__ == '__main__':
    unittest.main()