test.cc 28.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include <random>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/operators/jit/kernels.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
23
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
24

25
DEFINE_double(acc, 1e-5, "Test accuracy threshold.");
26

T
tensor-tang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
               const T upper = static_cast<T>(20.f)) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

template <typename T>
void ExpectEQ(const T* target, const T* refer, int n) {
  if (std::is_floating_point<T>::value) {
    for (int i = 0; i < n; ++i) {
42
      EXPECT_NEAR(target[i], refer[i], FLAGS_acc);
T
tensor-tang 已提交
43 44 45 46 47 48 49 50
    }
  } else {
    for (int i = 0; i < n; ++i) {
      EXPECT_EQ(target[i], refer[i]);
    }
  }
}

T
tensor-tang 已提交
51 52
std::vector<int> TestSizes() {
  std::vector<int> s;
T
tensor-tang 已提交
53
  for (int i = 1; i < 32; ++i) {
T
tensor-tang 已提交
54 55
    s.push_back(i);
  }
T
tensor-tang 已提交
56 57 58 59
  // test some large size
  s.push_back(100);
  s.push_back(1000);
  s.push_back(2000);
T
tensor-tang 已提交
60 61 62
  return s;
}

T
tensor-tang 已提交
63
namespace jit = paddle::operators::jit;
64
using CPUPlace = paddle::platform::CPUPlace;
T
tensor-tang 已提交
65 66 67

template <typename KernelTuples, typename... Args>
struct TestFuncWithRefer {
68 69 70
  void operator()(const typename KernelTuples::func_type tgt, Args... args) {
    LOG(FATAL) << "Should specify this function.";
  }
T
tensor-tang 已提交
71 72 73 74 75 76
};

template <typename T>
struct TestFuncWithRefer<jit::XYZNTuples<T>, std::vector<T>, std::vector<T>,
                         std::vector<T>> {
  void operator()(const typename jit::XYZNTuples<T>::func_type tgt,
77 78
                  const std::vector<T>& x, const std::vector<T>& y,
                  const std::vector<T>& zref) {
T
tensor-tang 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(zref.size(), x.size());
    EXPECT_EQ(zref.size(), y.size());
    const T* x_data = x.data();
    const T* y_data = y.data();
    const T* zref_data = zref.data();
    const int d = zref.size();

    std::vector<T> ztgt(d);
    T* ztgt_data = ztgt.data();
    // test normal
    tgt(x_data, y_data, ztgt_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
    // test inplace x
    std::copy(x.begin(), x.end(), ztgt.begin());
    tgt(ztgt_data, y_data, ztgt_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
    // test inplace y
    std::copy(y.begin(), y.end(), ztgt.begin());
    tgt(x_data, ztgt_data, ztgt_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::AXYNTuples<T>, T, std::vector<T>,
                         std::vector<T>> {
  void operator()(const typename jit::AXYNTuples<T>::func_type tgt, const T a,
                  const std::vector<T>& x, const std::vector<T>& yref) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(yref.size(), x.size());
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    const int d = yref.size();
    std::vector<T> ytgt(d);
    T* ytgt_data = ytgt.data();
    // test normal
    tgt(&a, x_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
    // test inplace x
    std::copy(x.begin(), x.end(), ytgt.begin());
    tgt(&a, ytgt_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
  }
};

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
template <typename T>
struct TestFuncWithRefer<jit::SoftmaxTuples<T>, std::vector<T>, std::vector<T>,
                         int, int> {
  void operator()(const typename jit::SoftmaxTuples<T>::func_type tgt,
                  const std::vector<T>& x, const std::vector<T>& yref, int n,
                  int bs) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(yref.size(), x.size());
    EXPECT_EQ(x.size(), static_cast<size_t>(n * bs));
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    std::vector<T> ytgt(n * bs);
    T* ytgt_data = ytgt.data();
    // test normal
    tgt(x_data, ytgt_data, n, bs);
    ExpectEQ<T>(ytgt_data, yref_data, n * bs);
    // test inplace x
    std::copy(x.begin(), x.end(), ytgt.begin());
    tgt(ytgt_data, ytgt_data, n, bs);
    ExpectEQ<T>(ytgt_data, yref_data, n * bs);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::XRNTuples<T>, std::vector<T>, T> {
  void operator()(const typename jit::XRNTuples<T>::func_type tgt,
                  const std::vector<T>& x, const T ref_res) {
    EXPECT_TRUE(tgt != nullptr);
    T tgt_res;
    tgt(x.data(), &tgt_res, x.size());
    ExpectEQ<T>(&tgt_res, &ref_res, 1);
  }
};

T
tensor-tang 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
template <typename T>
struct TestFuncWithRefer<jit::XYNTuples<T>, std::vector<T>, std::vector<T>> {
  void operator()(const typename jit::XYNTuples<T>::func_type tgt,
                  const std::vector<T>& x, const std::vector<T>& yref) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(yref.size(), x.size());
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    const int d = yref.size();
    std::vector<T> ytgt(d);
    T* ytgt_data = ytgt.data();
    // test normal
    tgt(x_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
    // test inplace x
    std::copy(x.begin(), x.end(), ytgt.begin());
    tgt(ytgt_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::LSTMTuples<T>, std::vector<T>, std::vector<T>,
182 183
                         std::vector<T>, std::vector<T>, std::vector<T>,
                         typename jit::LSTMTuples<T>::attr_type> {
T
tensor-tang 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  void operator()(const typename jit::LSTMTuples<T>::func_type tgt,
                  const std::vector<T>& xsrc, const std::vector<T>& wp,
                  const std::vector<T>& ct_1, const std::vector<T>& ct_ref,
                  const std::vector<T>& ht_ref,
                  const typename jit::LSTMTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(ct_ref.size(), ht_ref.size());
    EXPECT_EQ(ct_1.size(), ht_ref.size());
    EXPECT_EQ(xsrc.size(), 4 * ht_ref.size());
    EXPECT_EQ(wp.size(), 3 * ht_ref.size());

    // x could be changed after compute, so copy to save src
    int d = ht_ref.size();
    std::vector<T> x(xsrc.size()), ct(ct_ref.size()), ht(ht_ref.size());
    std::vector<T> checked(2 * d);
    std::copy(xsrc.begin(), xsrc.end(), x.begin());

    const T* ct_1_data = ct_1.data();
    const T* wp_data = wp.data();
    const T* ct_ref_data = ct_ref.data();
    const T* ht_ref_data = ht_ref.data();
    T* x_data = x.data();
    T* ct_data = ct.data();
    T* ht_data = ht.data();
    T* checked_data = checked.data();

210
    jit::lstm_t step;
T
tensor-tang 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    step.gates = x_data;
    step.ct_1 = ct_1_data;
    step.ct = ct_data;
    step.ht = ht_data;
    if (attr.use_peephole) {
      step.wp = wp_data;
      step.checked = checked_data;
    }

    tgt(&step, &attr);
    ExpectEQ<T>(ct_data, ct_ref_data, d);
    ExpectEQ<T>(ht_data, ht_ref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::GRUTuples<T>, std::vector<T>, std::vector<T>,
228 229
                         std::vector<T>,
                         typename jit::GRUTuples<T>::attr_type> {
T
tensor-tang 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
  void operator()(const typename jit::GRUTuples<T>::func_type tgt,
                  const std::vector<T>& xsrc, const std::vector<T>& ht_1,
                  const std::vector<T>& ht_ref,
                  const typename jit::GRUTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(ht_1.size(), ht_ref.size());
    EXPECT_EQ(xsrc.size(), 3 * ht_ref.size());

    // x could be changed after compute, so copy to save src
    int d = ht_ref.size();
    std::vector<T> x(xsrc.size()), ht(ht_ref.size());
    std::copy(xsrc.begin(), xsrc.end(), x.begin());
    const T* ht_1_data = ht_1.data();
    const T* ht_ref_data = ht_ref.data();
    T* x_data = x.data();
    T* ht_data = ht.data();
246
    jit::gru_t step;
T
tensor-tang 已提交
247 248 249 250 251 252 253 254
    step.gates = x_data;
    step.ht_1 = ht_1_data;
    step.ht = ht_data;
    tgt(&step, &attr);
    ExpectEQ<T>(ht_data, ht_ref_data, d);
  }
};

255
template <typename T>
256 257
struct TestFuncWithRefer<jit::SeqPoolTuples<T>, std::vector<T>, std::vector<T>,
                         typename jit::SeqPoolTuples<T>::attr_type> {
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
  void operator()(const typename jit::SeqPoolTuples<T>::func_type tgt,
                  const std::vector<T>& x, const std::vector<T>& yref,
                  const typename jit::SeqPoolTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(x.size() % yref.size(), 0);
    int w = yref.size();
    std::vector<T> y(w);
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    T* y_data = y.data();
    tgt(x_data, y_data, &attr);
    ExpectEQ<T>(y_data, yref_data, w);
  }
};

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
template <typename T>
struct TestFuncWithRefer<jit::EmbSeqPoolTuples<T>, std::vector<T>,
                         std::vector<int64_t>, std::vector<T>,
                         typename jit::EmbSeqPoolTuples<T>::attr_type> {
  void operator()(const typename jit::EmbSeqPoolTuples<T>::func_type tgt,
                  const std::vector<T>& table, const std::vector<int64_t>& idx,
                  const std::vector<T>& oref,
                  const typename jit::EmbSeqPoolTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(table.size(),
              static_cast<size_t>(attr.table_height * attr.table_width));
    EXPECT_EQ(idx.size(),
              static_cast<size_t>(attr.index_height * attr.index_width));
    EXPECT_EQ(oref.size(),
              static_cast<size_t>(attr.table_width * attr.index_width));
    const T* table_data = table.data();
    const int64_t* idx_data = idx.data();
    const T* oref_data = oref.data();
    int o_w = oref.size();
    std::vector<T> out(o_w);
    T* o_data = out.data();
    tgt(table_data, idx_data, o_data, &attr);
    ExpectEQ<T>(o_data, oref_data, o_w);
  }
};

T
tensor-tang 已提交
299
template <typename T>
300
struct TestFuncWithRefer<jit::MatMulTuples<T>, std::vector<T>, std::vector<T>,
301 302
                         std::vector<T>,
                         typename jit::MatMulTuples<T>::attr_type> {
T
tensor-tang 已提交
303 304
  void operator()(const typename jit::MatMulTuples<T>::func_type tgt,
                  const std::vector<T>& a, const std::vector<T>& b,
305 306
                  const std::vector<T>& cref,
                  const typename jit::MatMulTuples<T>::attr_type& attr) {
T
tensor-tang 已提交
307
    EXPECT_TRUE(tgt != nullptr);
308 309 310
    EXPECT_EQ(a.size(), static_cast<size_t>(attr.m * attr.k));
    EXPECT_EQ(b.size(), static_cast<size_t>(attr.k * attr.n));
    EXPECT_EQ(cref.size(), static_cast<size_t>(attr.m * attr.n));
T
tensor-tang 已提交
311 312 313 314 315
    std::vector<T> c(cref.size());
    const T* a_data = a.data();
    const T* b_data = b.data();
    const T* cref_data = cref.data();
    T* c_data = c.data();
316 317
    tgt(a_data, b_data, c_data, &attr);
    ExpectEQ<T>(c_data, cref_data, attr.m * attr.n);
T
tensor-tang 已提交
318 319 320
  }
};

321 322
template <jit::KernelType KT, typename KernelTuples, typename PlaceType,
          typename... Args>
T
tensor-tang 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
void TestAllImpls(const typename KernelTuples::attr_type& attr, Args... args) {
  TestFuncWithRefer<KernelTuples, Args...> test;
  // test jitcode
  auto jitcode = jit::GetJitCode<KT, KernelTuples, PlaceType>(attr);
  if (jitcode) {
    VLOG(10) << "Test Jitcode Kernel ";
    test(jitcode, args...);
  }
  // test all impls in more
  jit::KernelKey kkey(KT, PlaceType());
  auto& pool = jit::KernelPool().Instance().AllKernels();
  auto iter = pool.find(kkey);
  if (iter != pool.end()) {
    auto& impls = iter->second;
    for (auto& impl : impls) {
T
tensor-tang 已提交
338
      auto i = dynamic_cast<const jit::KernelMore<KernelTuples>*>(impl.get());
T
tensor-tang 已提交
339 340
      if (i && i->UseMe(attr)) {
        auto more = i->GetFunc();
T
tensor-tang 已提交
341
        VLOG(10) << "Test More Kernel : " << i->ImplType();
T
tensor-tang 已提交
342 343 344 345 346
        test(more, args...);
      }
    }
  }
  // test result from Get function
T
tensor-tang 已提交
347
  // VLOG(10) << "Test Get function ";
T
tensor-tang 已提交
348 349
  auto tgt = jit::Get<KT, KernelTuples, PlaceType>(attr);
  test(tgt, args...);
T
tensor-tang 已提交
350 351
}

352
template <jit::KernelType KT, typename T, typename PlaceType>
353
void TestXYZNKernel() {
354
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
T
tensor-tang 已提交
355
  for (int d : TestSizes()) {
356
    auto ref = jit::GetRefer<KT, jit::XYZNTuples<T>>();
T
tensor-tang 已提交
357 358
    EXPECT_TRUE(ref != nullptr);

T
tensor-tang 已提交
359
    std::vector<T> x(d), y(d), zref(d);
T
tensor-tang 已提交
360 361 362
    RandomVec<T>(d, x.data());
    RandomVec<T>(d, y.data());

T
tensor-tang 已提交
363 364 365 366 367 368 369 370 371 372 373
    std::vector<T> xinp(d), yinp(d);  // inplace test
    std::copy(x.begin(), x.end(), xinp.begin());
    std::copy(y.begin(), y.end(), yinp.begin());

    const T* x_data = x.data();
    const T* y_data = y.data();
    T* zref_data = zref.data();
    T* xinp_data = xinp.data();
    T* yinp_data = yinp.data();

    // test refer code inplace
T
tensor-tang 已提交
374
    ref(x_data, y_data, zref_data, d);
T
tensor-tang 已提交
375 376 377 378 379
    ref(x_data, yinp_data, yinp_data, d);
    ref(xinp_data, y_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, zref_data, d);
    ExpectEQ<T>(yinp_data, zref_data, d);

T
tensor-tang 已提交
380 381
    TestAllImpls<KT, jit::XYZNTuples<T>, PlaceType, std::vector<T>,
                 std::vector<T>, std::vector<T>>(d, x, y, zref);
T
tensor-tang 已提交
382 383
  }
}
T
tensor-tang 已提交
384

385
template <jit::KernelType KT, typename T, typename PlaceType>
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
void TestAXYNKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KT, jit::AXYNTuples<T>>();
    EXPECT_TRUE(ref != nullptr);

    const T a = static_cast<T>(3);
    std::vector<T> x(d), yref(d);
    std::vector<T> xinp(d);  // inplace test
    RandomVec<T>(d, x.data());
    std::copy(x.begin(), x.end(), xinp.begin());

    const T* x_data = x.data();
    T* yref_data = yref.data();
    T* xinp_data = xinp.data();
    // test refer code inplace
    ref(&a, x_data, yref_data, d);
    ref(&a, xinp_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, yref_data, d);

T
tensor-tang 已提交
406 407
    TestAllImpls<KT, jit::AXYNTuples<T>, PlaceType, T, std::vector<T>,
                 std::vector<T>>(d, a, x, yref);
408 409 410
  }
}

411 412 413
template <jit::KernelType KT, typename T, typename PlaceType>
void TestXRNKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
414 415
  auto last_acc = FLAGS_acc;
  FLAGS_acc = 1e-4;
416 417 418 419
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KT, jit::XRNTuples<T>>();
    EXPECT_TRUE(ref != nullptr);
    std::vector<T> x(d);
T
tensor-tang 已提交
420
    RandomVec<T>(d, x.data(), -2.f, 2.f);
421 422 423 424 425
    T ref_res;
    ref(x.data(), &ref_res, d);
    TestAllImpls<KT, jit::XRNTuples<T>, PlaceType, std::vector<T>, T>(d, x,
                                                                      ref_res);
  }
426
  FLAGS_acc = last_acc;
427 428 429
}

template <jit::KernelType KT, typename T, typename PlaceType>
430 431 432 433 434 435 436 437
void TestXYNKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KT, jit::XYNTuples<T>>();
    EXPECT_TRUE(ref != nullptr);

    std::vector<T> x(d), yref(d);
    std::vector<T> xinp(d);  // inplace test
438
    RandomVec<T>(d, x.data(), -2.f, 2.f);
439 440 441 442 443 444 445 446 447 448
    std::copy(x.begin(), x.end(), xinp.begin());

    const T* x_data = x.data();
    T* yref_data = yref.data();
    T* xinp_data = xinp.data();
    // test refer code inplace
    ref(x_data, yref_data, d);
    ref(xinp_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, yref_data, d);

T
tensor-tang 已提交
449 450
    TestAllImpls<KT, jit::XYNTuples<T>, PlaceType, std::vector<T>,
                 std::vector<T>>(d, x, yref);
451 452 453
  }
}

454
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
void TestLSTMKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  std::vector<std::string> all_acts = {"sigmoid", "tanh", "relu", "identity"};
  for (int d : TestSizes()) {
    for (bool use_peephole : {true, false}) {
      for (auto& act_gate : all_acts) {
        for (auto& act_cand : all_acts) {
          for (auto& act_cell : all_acts) {
            const jit::lstm_attr_t attr(
                d, jit::to_kerneltype(act_gate), jit::to_kerneltype(act_cand),
                jit::to_kerneltype(act_cell), use_peephole);
            auto ref = jit::GetRefer<KT, jit::LSTMTuples<T>>();
            EXPECT_TRUE(ref != nullptr);
            std::vector<T> xsrc(4 * d), wp(3 * d), ct_1(d);
            std::vector<T> ct_ref(d), ht_ref(d), checked(2 * d);
            RandomVec<T>(4 * d, xsrc.data(), -2.f, 2.f);
471 472
            RandomVec<T>(3 * d, wp.data(), -1.f, 1.f);
            RandomVec<T>(d, ct_1.data(), -1.f, 1.f);
T
tensor-tang 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
            // x could be changed after compute, so copy to save src
            std::vector<T> x(xsrc.size());
            std::copy(xsrc.begin(), xsrc.end(), x.begin());
            const T* ct_1_data = ct_1.data();
            const T* wp_data = wp.data();
            T* x_data = x.data();
            T* checked_data = checked.data();
            T* ct_ref_data = ct_ref.data();
            T* ht_ref_data = ht_ref.data();
            jit::lstm_t step;
            step.gates = x_data;
            step.ct_1 = ct_1_data;
            step.ct = ct_ref_data;
            step.ht = ht_ref_data;
            if (use_peephole) {
              step.wp = wp_data;
              step.checked = checked_data;
            }
            ref(&step, &attr);
T
tensor-tang 已提交
492
            VLOG(10) << attr;
T
tensor-tang 已提交
493 494 495 496
            TestAllImpls<KT, jit::LSTMTuples<T>, PlaceType, std::vector<T>,
                         std::vector<T>, std::vector<T>, std::vector<T>,
                         std::vector<T>>(attr, xsrc, wp, ct_1, ct_ref, ht_ref,
                                         attr);
T
tensor-tang 已提交
497 498 499 500 501 502 503
          }
        }
      }
    }
  }
}

504
template <jit::KernelType KT, typename T, typename PlaceType>
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
void TestGRUKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  std::vector<std::string> all_acts = {"sigmoid", "tanh", "relu", "identity"};
  for (int d : TestSizes()) {
    for (auto& act_gate : all_acts) {
      for (auto& act_cand : all_acts) {
        const jit::gru_attr_t attr(d, jit::to_kerneltype(act_gate),
                                   jit::to_kerneltype(act_cand));
        auto ref = jit::GetRefer<KT, jit::GRUTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> xsrc(3 * d), ht_1(d), ht_ref(d);
        RandomVec<T>(3 * d, xsrc.data(), -2.f, 2.f);
        RandomVec<T>(d, ht_1.data(), -2.f, 2.f);
        // x could be changed after compute, so copy to save src
        std::vector<T> x(xsrc.size());
        std::copy(xsrc.begin(), xsrc.end(), x.begin());
        const T* ht_1_data = ht_1.data();
        T* x_data = x.data();
        T* ht_ref_data = ht_ref.data();
        jit::gru_t step;
        step.gates = x_data;
        step.ht_1 = ht_1_data;
        step.ht = ht_ref_data;
        ref(&step, &attr);
T
tensor-tang 已提交
529
        VLOG(10) << attr;
T
tensor-tang 已提交
530 531 532
        TestAllImpls<KT, jit::GRUTuples<T>, PlaceType, std::vector<T>,
                     std::vector<T>, std::vector<T>>(attr, xsrc, ht_1, ht_ref,
                                                     attr);
533 534 535 536 537
      }
    }
  }
}

538
template <jit::KernelType KT, typename T, typename PlaceType>
539 540
void TestSeqPoolKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
541 542
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum, jit::SeqPoolType::kAvg, jit::SeqPoolType::kSqrt};
543
  for (auto type : pool_types) {
T
tensor-tang 已提交
544 545 546 547
    for (int w : TestSizes()) {
      jit::seq_pool_attr_t attr(w, type);
      for (int h : TestSizes()) {
        attr.h = h;
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
        auto ref = jit::GetRefer<KT, jit::SeqPoolTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> x(h * w), yref(w);
        RandomVec<T>(h * w, x.data(), -2.f, 2.f);
        const T* x_data = x.data();
        T* yref_data = yref.data();
        ref(x_data, yref_data, &attr);
        VLOG(10) << attr;
        TestAllImpls<KT, jit::SeqPoolTuples<T>, PlaceType, std::vector<T>,
                     std::vector<T>>(attr, x, yref, attr);
      }
    }
  }
}

563
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
564 565
void TestMatMulKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
566 567 568 569
  auto last_acc = FLAGS_acc;
  // TODO(intel): fix MKL acc issue
  // https://github.com/PaddlePaddle/Paddle/issues/15447
  FLAGS_acc = 1e-3;
T
tensor-tang 已提交
570 571 572 573 574 575
  for (int m : {1, 2, 3, 4}) {
    for (int n : {1, 2, 3, 4}) {
      for (int k : TestSizes()) {
        auto ref = jit::GetRefer<KT, jit::MatMulTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> a(m * k), b(k * n), c(m * n);
576 577
        RandomVec<T>(m * k, a.data(), -2.f, 2.f);
        RandomVec<T>(k * n, b.data(), -2.f, 2.f);
T
tensor-tang 已提交
578 579 580
        const T* a_data = a.data();
        const T* b_data = b.data();
        T* c_data = c.data();
581 582
        const jit::matmul_attr_t attr{m, n, k};
        ref(a_data, b_data, c_data, &attr);
T
tensor-tang 已提交
583
        TestAllImpls<KT, jit::MatMulTuples<T>, PlaceType, std::vector<T>,
584
                     std::vector<T>, std::vector<T>>(attr, a, b, c, attr);
T
tensor-tang 已提交
585 586 587
      }
    }
  }
588
  FLAGS_acc = last_acc;
T
tensor-tang 已提交
589 590
}

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
template <jit::KernelType KT, typename T, typename PlaceType>
void TestSoftmaxKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  for (int bs : {1, 2, 10}) {
    for (int n : TestSizes()) {
      auto ref = jit::GetRefer<KT, jit::SoftmaxTuples<T>>();
      EXPECT_TRUE(ref != nullptr);
      std::vector<T> x(bs * n), y(bs * n);
      RandomVec<T>(bs * n, x.data(), -2.f, 2.f);
      const T* x_data = x.data();
      T* y_data = y.data();

      std::vector<T> xinp(x.size());  // inplace test
      std::copy(x.begin(), x.end(), xinp.begin());
      ref(x_data, y_data, n, bs);
      T* xinp_data = xinp.data();
      ref(xinp_data, xinp_data, n, bs);
      ExpectEQ<T>(xinp_data, y_data, n * bs);

      TestAllImpls<KT, jit::SoftmaxTuples<T>, PlaceType, std::vector<T>,
                   std::vector<T>>(n, x, y, n, bs);
    }
  }
}

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
template <jit::KernelType KT, typename T, typename PlaceType>
void TestEmbSeqPoolKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  int64_t tbl_h = 1e4;
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum};  // only support sum yet
  for (int tbl_w : TestSizes()) {
    std::vector<T> table(tbl_h * tbl_w);
    RandomVec<T>(tbl_h * tbl_w, table.data(), -2.f, 2.f);
    const T* table_data = table.data();
    for (auto type : pool_types) {
      for (int idx_w : {1, 2, 10, 16}) {
        for (int idx_h : {1, 2, 10, 16}) {
          auto ref = jit::GetRefer<KT, jit::EmbSeqPoolTuples<T>>();
          EXPECT_TRUE(ref != nullptr);
          std::vector<int64_t> idx(idx_h * idx_w);
          RandomVec<int64_t>(idx_h * idx_w, idx.data(), 0, tbl_h - 1);
          int64_t out_w = tbl_w * idx_w;
          std::vector<T> oref(out_w);
          const int64_t* idx_data = idx.data();
          T* o_data = oref.data();
          jit::emb_seq_pool_attr_t attr(tbl_h, tbl_w, idx_h, idx_w, out_w,
                                        type);
          ref(table_data, idx_data, o_data, &attr);

          TestAllImpls<KT, jit::EmbSeqPoolTuples<T>, PlaceType, std::vector<T>,
                       std::vector<int64_t>, std::vector<T>>(attr, table, idx,
                                                             oref, attr);
        }
      }
    }
  }
}

650
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
void TestNCHW16CMulNCKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  const int n = 3, c = 16 * 4, h = 10, w = 10;
  auto ref = jit::GetRefer<KT, jit::NCHW16CMulNCTuples<T>>();
  EXPECT_TRUE(ref != nullptr);
  int sz = n * c * h * w;
  std::vector<T> x(sz), y(n * c), zref(sz);
  std::vector<T> ztgt(sz), zjit(sz);
  RandomVec<T>(sz, x.data(), -2.f, 2.f);
  RandomVec<T>(n * c, y.data(), -2.f, 2.f);

  const T* x_data = x.data();
  const T* y_data = y.data();
  T* zref_data = zref.data();
  T* ztgt_data = ztgt.data();
  T* zjit_data = zjit.data();
  constexpr int simd_width = ZMM_FLOAT_BLOCK;
  int C = c / simd_width;
  auto tgt = jit::Get<KT, jit::NCHW16CMulNCTuples<T>, PlaceType>(0);
  auto jitcode = jit::GetJitCode<KT, jit::NCHW16CMulNCTuples<T>, PlaceType>(0);
  EXPECT_TRUE(tgt != nullptr);

  if (std::is_same<T, float>::value &&
      paddle::platform::MayIUse(paddle::platform::avx512f)) {
    EXPECT_TRUE(jitcode != nullptr);
  }
  for (int ni = 0; ni < n; ni++) {
    for (int ci = 0; ci < C; ci++) {
      auto ptr_x =
          x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
      auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
      auto ptr_zref =
          zref_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
      auto ptr_ztgt =
          ztgt_data + ni * C * h * w * simd_width + ci * h * w * simd_width;

      ref(ptr_x, ptr_y, ptr_zref, h, w);
      tgt(ptr_x, ptr_y, ptr_ztgt, h, w);

      if (jitcode) {
        auto ptr_zjit =
            zjit_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
        jitcode(ptr_x, ptr_y, ptr_zjit, h, w);
      }
    }
  }
  ExpectEQ<T>(ztgt_data, zref_data, sz);
  if (jitcode) {
    ExpectEQ<T>(zjit_data, zref_data, sz);
  }
}

T
tensor-tang 已提交
703
// XYZNTuple
T
tensor-tang 已提交
704
TEST(JITKernel, kVMul) {
705 706
  TestXYZNKernel<jit::kVMul, float, CPUPlace>();
  TestXYZNKernel<jit::kVMul, double, CPUPlace>();
T
tensor-tang 已提交
707 708
}

T
tensor-tang 已提交
709
TEST(JITKernel, kVAdd) {
710 711
  TestXYZNKernel<jit::kVAdd, float, CPUPlace>();
  TestXYZNKernel<jit::kVAdd, double, CPUPlace>();
T
tensor-tang 已提交
712 713
}

T
tensor-tang 已提交
714
TEST(JITKernel, kVAddRelu) {
715 716
  TestXYZNKernel<jit::kVAddRelu, float, CPUPlace>();
  TestXYZNKernel<jit::kVAddRelu, double, CPUPlace>();
T
tensor-tang 已提交
717 718
}

T
tensor-tang 已提交
719
TEST(JITKernel, kVSub) {
720 721
  TestXYZNKernel<jit::kVSub, float, CPUPlace>();
  TestXYZNKernel<jit::kVSub, double, CPUPlace>();
T
tensor-tang 已提交
722 723 724
}

// AXYNTuples
T
tensor-tang 已提交
725
TEST(JITKernel, kVScal) {
726 727
  TestAXYNKernel<jit::kVScal, float, CPUPlace>();
  TestAXYNKernel<jit::kVScal, double, CPUPlace>();
T
tensor-tang 已提交
728 729
}

T
tensor-tang 已提交
730
TEST(JITKernel, kVAddBias) {
731 732 733 734 735 736 737 738 739 740 741 742 743
  TestAXYNKernel<jit::kVAddBias, float, CPUPlace>();
  TestAXYNKernel<jit::kVAddBias, double, CPUPlace>();
}

// XRNTuples
TEST(JITKernel, kHMax) {
  TestXRNKernel<jit::kHMax, float, CPUPlace>();
  TestXRNKernel<jit::kHMax, double, CPUPlace>();
}

TEST(JITKernel, kHSum) {
  TestXRNKernel<jit::kHSum, float, CPUPlace>();
  TestXRNKernel<jit::kHSum, double, CPUPlace>();
T
tensor-tang 已提交
744 745 746
}

// XYNTuples
T
tensor-tang 已提交
747
TEST(JITKernel, kVRelu) {
748 749
  TestXYNKernel<jit::kVRelu, float, CPUPlace>();
  TestXYNKernel<jit::kVRelu, double, CPUPlace>();
T
tensor-tang 已提交
750 751
}

T
tensor-tang 已提交
752
TEST(JITKernel, kVIdentity) {
753 754
  TestXYNKernel<jit::kVIdentity, float, CPUPlace>();
  TestXYNKernel<jit::kVIdentity, double, CPUPlace>();
T
tensor-tang 已提交
755 756
}

T
tensor-tang 已提交
757
TEST(JITKernel, kVSquare) {
758 759
  TestXYNKernel<jit::kVSquare, float, CPUPlace>();
  TestXYNKernel<jit::kVSquare, double, CPUPlace>();
T
tensor-tang 已提交
760 761
}

T
tensor-tang 已提交
762
TEST(JITKernel, kVExp) {
763 764
  TestXYNKernel<jit::kVExp, float, CPUPlace>();
  TestXYNKernel<jit::kVExp, double, CPUPlace>();
T
tensor-tang 已提交
765 766
}

T
tensor-tang 已提交
767
TEST(JITKernel, kVSigmoid) {
768 769
  TestXYNKernel<jit::kVSigmoid, float, CPUPlace>();
  TestXYNKernel<jit::kVSigmoid, double, CPUPlace>();
T
tensor-tang 已提交
770 771
}

T
tensor-tang 已提交
772
TEST(JITKernel, kVTanh) {
773 774
  TestXYNKernel<jit::kVTanh, float, CPUPlace>();
  TestXYNKernel<jit::kVTanh, double, CPUPlace>();
T
tensor-tang 已提交
775 776 777
}

// LSTM
T
tensor-tang 已提交
778
TEST(JITKernel, kLSTMCtHt) {
779 780
  TestLSTMKernel<jit::kLSTMCtHt, float, CPUPlace>();
  TestLSTMKernel<jit::kLSTMCtHt, double, CPUPlace>();
T
tensor-tang 已提交
781 782
}

T
tensor-tang 已提交
783
TEST(JITKernel, kLSTMC1H1) {
784 785
  TestLSTMKernel<jit::kLSTMC1H1, float, CPUPlace>();
  TestLSTMKernel<jit::kLSTMC1H1, double, CPUPlace>();
T
tensor-tang 已提交
786 787 788
}

// GRU
T
tensor-tang 已提交
789
TEST(JITKernel, kGRUH1) {
790 791
  TestGRUKernel<jit::kGRUH1, float, CPUPlace>();
  TestGRUKernel<jit::kGRUH1, double, CPUPlace>();
792 793
}

T
tensor-tang 已提交
794
TEST(JITKernel, kGRUHtPart1) {
795 796
  TestGRUKernel<jit::kGRUHtPart1, float, CPUPlace>();
  TestGRUKernel<jit::kGRUHtPart1, double, CPUPlace>();
797 798
}

T
tensor-tang 已提交
799
TEST(JITKernel, kGRUHtPart2) {
800 801
  TestGRUKernel<jit::kGRUHtPart2, float, CPUPlace>();
  TestGRUKernel<jit::kGRUHtPart2, double, CPUPlace>();
802 803
}

804
TEST(JITKernel, kSeqPool) {
805 806
  TestSeqPoolKernel<jit::kSeqPool, float, CPUPlace>();
  TestSeqPoolKernel<jit::kSeqPool, double, CPUPlace>();
807 808
}

T
tensor-tang 已提交
809
TEST(JITKernel, kMatMul) {
810 811 812 813 814 815 816
  TestMatMulKernel<jit::kMatMul, float, CPUPlace>();
  TestMatMulKernel<jit::kMatMul, double, CPUPlace>();
}

TEST(JITKernel, kSoftmax) {
  TestSoftmaxKernel<jit::kSoftmax, float, CPUPlace>();
  TestSoftmaxKernel<jit::kSoftmax, double, CPUPlace>();
T
tensor-tang 已提交
817 818
}

819 820 821 822 823
TEST(JITKernel, kEmbSeqPool) {
  TestEmbSeqPoolKernel<jit::kEmbSeqPool, float, CPUPlace>();
  TestEmbSeqPoolKernel<jit::kEmbSeqPool, double, CPUPlace>();
}

T
tensor-tang 已提交
824
TEST(JITKernel, kNCHW16CMulNC) {
825 826
  TestNCHW16CMulNCKernel<jit::kNCHW16CMulNC, float, CPUPlace>();
  TestNCHW16CMulNCKernel<jit::kNCHW16CMulNC, double, CPUPlace>();
T
tensor-tang 已提交
827 828
}

829
// TODO(yihua/TJ): add crf decoding and layer norm unit tests
T
tensor-tang 已提交
830

831 832 833
TEST(JITKernel, pool) {
  // TODO(TJ): add some test
}