multiclass_nms_op.cc 25.4 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */

J
jerrywgz 已提交
14
#include <glog/logging.h>
15

16
#include "paddle/fluid/framework/infershape_utils.h"
Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/operators/detection/nms_util.h"
19
#include "paddle/phi/infermeta/ternary.h"
20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

27 28 29 30 31 32 33 34 35 36
inline std::vector<size_t> GetNmsLodFromRoisNum(const Tensor* rois_num) {
  std::vector<size_t> rois_lod;
  auto* rois_num_data = rois_num->data<int>();
  rois_lod.push_back(static_cast<size_t>(0));
  for (int i = 0; i < rois_num->numel(); ++i) {
    rois_lod.push_back(rois_lod.back() + static_cast<size_t>(rois_num_data[i]));
  }
  return rois_lod;
}

D
dangqingqing 已提交
37
class MultiClassNMSOp : public framework::OperatorWithKernel {
38 39 40 41
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
X
xiaoting 已提交
42 43 44
    OP_INOUT_CHECK(ctx->HasInput("BBoxes"), "Input", "BBoxes", "MultiClassNMS");
    OP_INOUT_CHECK(ctx->HasInput("Scores"), "Input", "Scores", "MultiClassNMS");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "MultiClassNMS");
D
dangqingqing 已提交
45
    auto box_dims = ctx->GetInputDim("BBoxes");
46
    auto score_dims = ctx->GetInputDim("Scores");
J
jerrywgz 已提交
47
    auto score_size = score_dims.size();
48

49
    if (ctx->IsRuntime()) {
50 51
      PADDLE_ENFORCE_EQ(score_size == 2 || score_size == 3,
                        true,
52 53 54 55
                        platform::errors::InvalidArgument(
                            "The rank of Input(Scores) must be 2 or 3"
                            ". But received rank = %d",
                            score_size));
56 57
      PADDLE_ENFORCE_EQ(box_dims.size(),
                        3,
X
xiaoting 已提交
58 59
                        platform::errors::InvalidArgument(
                            "The rank of Input(BBoxes) must be 3"
60
                            ". But received rank = %d",
X
xiaoting 已提交
61
                            box_dims.size()));
J
jerrywgz 已提交
62
      if (score_size == 3) {
63 64 65 66 67 68 69 70 71 72 73 74 75
        PADDLE_ENFORCE_EQ(box_dims[2] == 4 || box_dims[2] == 8 ||
                              box_dims[2] == 16 || box_dims[2] == 24 ||
                              box_dims[2] == 32,
                          true,
                          platform::errors::InvalidArgument(
                              "The last dimension of Input"
                              "(BBoxes) must be 4 or 8, "
                              "represents the layout of coordinate "
                              "[xmin, ymin, xmax, ymax] or "
                              "4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
                              "8 points: [xi, yi] i= 1,2,...,8 or "
                              "12 points: [xi, yi] i= 1,2,...,12 or "
                              "16 points: [xi, yi] i= 1,2,...,16"));
J
jerrywgz 已提交
76
        PADDLE_ENFORCE_EQ(
77 78
            box_dims[1],
            score_dims[2],
X
xiaoting 已提交
79 80 81 82 83
            platform::errors::InvalidArgument(
                "The 2nd dimension of Input(BBoxes) must be equal to "
                "last dimension of Input(Scores), which represents the "
                "predicted bboxes."
                "But received box_dims[1](%s) != socre_dims[2](%s)",
84 85
                box_dims[1],
                score_dims[2]));
J
jerrywgz 已提交
86
      } else {
87 88
        PADDLE_ENFORCE_EQ(box_dims[2],
                          4,
X
xiaoting 已提交
89
                          platform::errors::InvalidArgument(
90 91
                              "The last dimension of Input"
                              "(BBoxes) must be 4. But received dimension = %d",
X
xiaoting 已提交
92
                              box_dims[2]));
93
        PADDLE_ENFORCE_EQ(
94 95
            box_dims[1],
            score_dims[1],
96 97 98 99
            platform::errors::InvalidArgument(
                "The 2nd dimension of Input"
                "(BBoxes) must be equal to the 2nd dimension of Input(Scores). "
                "But received box dimension = %d, score dimension = %d",
100 101
                box_dims[1],
                score_dims[1]));
J
jerrywgz 已提交
102
      }
103
    }
104 105
    // Here the box_dims[0] is not the real dimension of output.
    // It will be rewritten in the computing kernel.
J
jerrywgz 已提交
106
    if (score_size == 3) {
107
      ctx->SetOutputDim("Out", {-1, box_dims[2] + 2});
J
jerrywgz 已提交
108 109 110
    } else {
      ctx->SetOutputDim("Out", {-1, box_dims[2] + 2});
    }
111 112 113
    if (!ctx->IsRuntime()) {
      ctx->SetLoDLevel("Out", std::max(ctx->GetLoDLevel("BBoxes"), 1));
    }
114
  }
D
dangqingqing 已提交
115 116 117 118 119

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
120
        OperatorWithKernel::IndicateVarDataType(ctx, "Scores"),
121
        platform::CPUPlace());
D
dangqingqing 已提交
122
  }
123 124
};

125 126
template <class T>
void SliceOneClass(const platform::DeviceContext& ctx,
127 128
                   const framework::Tensor& items,
                   const int class_id,
129 130 131 132 133 134
                   framework::Tensor* one_class_item) {
  T* item_data = one_class_item->mutable_data<T>(ctx.GetPlace());
  const T* items_data = items.data<T>();
  const int64_t num_item = items.dims()[0];
  const int class_num = items.dims()[1];
  if (items.dims().size() == 3) {
J
jerrywgz 已提交
135 136 137 138 139 140 141 142 143 144
    int item_size = items.dims()[2];
    for (int i = 0; i < num_item; ++i) {
      std::memcpy(item_data + i * item_size,
                  items_data + i * class_num * item_size + class_id * item_size,
                  sizeof(T) * item_size);
    }
  } else {
    for (int i = 0; i < num_item; ++i) {
      item_data[i] = items_data[i * class_num + class_id];
    }
145 146 147
  }
}

148
template <typename T>
D
dangqingqing 已提交
149
class MultiClassNMSKernel : public framework::OpKernel<T> {
150
 public:
151 152 153 154 155 156 157
  void NMSFast(const Tensor& bbox,
               const Tensor& scores,
               const T score_threshold,
               const T nms_threshold,
               const T eta,
               const int64_t top_k,
               std::vector<int>* selected_indices,
J
jerrywgz 已提交
158
               const bool normalized) const {
159 160 161
    // The total boxes for each instance.
    int64_t num_boxes = bbox.dims()[0];
    // 4: [xmin ymin xmax ymax]
Y
Yipeng 已提交
162 163
    // 8: [x1 y1 x2 y2 x3 y3 x4 y4]
    // 16, 24, or 32: [x1 y1 x2 y2 ...  xn yn], n = 8, 12 or 16
164 165 166 167 168 169 170 171 172 173 174 175 176 177
    int64_t box_size = bbox.dims()[1];

    std::vector<T> scores_data(num_boxes);
    std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
    std::vector<std::pair<T, int>> sorted_indices;
    GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices);

    selected_indices->clear();
    T adaptive_threshold = nms_threshold;
    const T* bbox_data = bbox.data<T>();

    while (sorted_indices.size() != 0) {
      const int idx = sorted_indices.front().second;
      bool keep = true;
178
      for (size_t k = 0; k < selected_indices->size(); ++k) {
179 180
        if (keep) {
          const int kept_idx = (*selected_indices)[k];
Y
Yipeng 已提交
181 182 183
          T overlap = T(0.);
          // 4: [xmin ymin xmax ymax]
          if (box_size == 4) {
184 185 186
            overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
                                        bbox_data + kept_idx * box_size,
                                        normalized);
Y
Yipeng 已提交
187 188 189 190
          }
          // 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
          if (box_size == 8 || box_size == 16 || box_size == 24 ||
              box_size == 32) {
J
jerrywgz 已提交
191
            overlap = PolyIoU<T>(bbox_data + idx * box_size,
192 193
                                 bbox_data + kept_idx * box_size,
                                 box_size,
J
jerrywgz 已提交
194
                                 normalized);
Y
Yipeng 已提交
195
          }
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
          keep = overlap <= adaptive_threshold;
        } else {
          break;
        }
      }
      if (keep) {
        selected_indices->push_back(idx);
      }
      sorted_indices.erase(sorted_indices.begin());
      if (keep && eta < 1 && adaptive_threshold > 0.5) {
        adaptive_threshold *= eta;
      }
    }
  }

D
dangqingqing 已提交
211
  void MultiClassNMS(const framework::ExecutionContext& ctx,
212 213
                     const Tensor& scores,
                     const Tensor& bboxes,
J
jerrywgz 已提交
214
                     const int scores_size,
215 216
                     std::map<int, std::vector<int>>* indices,
                     int* num_nmsed_out) const {
D
dangqingqing 已提交
217 218 219
    int64_t background_label = ctx.Attr<int>("background_label");
    int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
    int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
J
jerrywgz 已提交
220
    bool normalized = ctx.Attr<bool>("normalized");
221 222
    T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
    T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
D
dangqingqing 已提交
223
    T score_threshold = static_cast<T>(ctx.Attr<float>("score_threshold"));
L
Leo Chen 已提交
224
    auto& dev_ctx = ctx.template device_context<phi::CPUContext>();
225 226

    int num_det = 0;
227 228 229 230 231 232 233 234 235 236 237 238 239

    int64_t class_num = scores_size == 3 ? scores.dims()[0] : scores.dims()[1];
    Tensor bbox_slice, score_slice;
    for (int64_t c = 0; c < class_num; ++c) {
      if (c == background_label) continue;
      if (scores_size == 3) {
        score_slice = scores.Slice(c, c + 1);
        bbox_slice = bboxes;
      } else {
        score_slice.Resize({scores.dims()[0], 1});
        bbox_slice.Resize({scores.dims()[0], 4});
        SliceOneClass<T>(dev_ctx, scores, c, &score_slice);
        SliceOneClass<T>(dev_ctx, bboxes, c, &bbox_slice);
J
jerrywgz 已提交
240
      }
241 242 243 244 245 246 247 248
      NMSFast(bbox_slice,
              score_slice,
              score_threshold,
              nms_threshold,
              nms_eta,
              nms_top_k,
              &((*indices)[c]),
              normalized);
249
      if (scores_size == 2) {
J
jerrywgz 已提交
250 251
        std::stable_sort((*indices)[c].begin(), (*indices)[c].end());
      }
252
      num_det += (*indices)[c].size();
253 254
    }

255
    *num_nmsed_out = num_det;
256 257
    const T* scores_data = scores.data<T>();
    if (keep_top_k > -1 && num_det > keep_top_k) {
J
jerrywgz 已提交
258
      const T* sdata;
259
      std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
260
      for (const auto& it : *indices) {
261
        int label = it.first;
J
jerrywgz 已提交
262
        if (scores_size == 3) {
263
          sdata = scores_data + label * scores.dims()[1];
J
jerrywgz 已提交
264
        } else {
265 266 267
          score_slice.Resize({scores.dims()[0], 1});
          SliceOneClass<T>(dev_ctx, scores, label, &score_slice);
          sdata = score_slice.data<T>();
J
jerrywgz 已提交
268
        }
269
        const std::vector<int>& label_indices = it.second;
270
        for (size_t j = 0; j < label_indices.size(); ++j) {
271 272 273 274 275 276
          int idx = label_indices[j];
          score_index_pairs.push_back(
              std::make_pair(sdata[idx], std::make_pair(label, idx)));
        }
      }
      // Keep top k results per image.
277 278
      std::stable_sort(score_index_pairs.begin(),
                       score_index_pairs.end(),
279
                       SortScorePairDescend<std::pair<int, int>>);
280 281 282 283
      score_index_pairs.resize(keep_top_k);

      // Store the new indices.
      std::map<int, std::vector<int>> new_indices;
284
      for (size_t j = 0; j < score_index_pairs.size(); ++j) {
285 286 287 288
        int label = score_index_pairs[j].second.first;
        int idx = score_index_pairs[j].second.second;
        new_indices[label].push_back(idx);
      }
J
jerrywgz 已提交
289 290 291 292 293 294 295
      if (scores_size == 2) {
        for (const auto& it : new_indices) {
          int label = it.first;
          std::stable_sort(new_indices[label].begin(),
                           new_indices[label].end());
        }
      }
296 297
      new_indices.swap(*indices);
      *num_nmsed_out = keep_top_k;
298 299 300
    }
  }

J
jerrywgz 已提交
301
  void MultiClassOutput(const platform::DeviceContext& ctx,
302 303
                        const Tensor& scores,
                        const Tensor& bboxes,
304
                        const std::map<int, std::vector<int>>& selected_indices,
305 306 307 308
                        const int scores_size,
                        Tensor* outs,
                        int* oindices = nullptr,
                        const int offset = 0) const {
J
jerrywgz 已提交
309
    int64_t class_num = scores.dims()[1];
Y
Yipeng 已提交
310 311
    int64_t predict_dim = scores.dims()[1];
    int64_t box_size = bboxes.dims()[1];
J
jerrywgz 已提交
312 313 314 315
    if (scores_size == 2) {
      box_size = bboxes.dims()[2];
    }
    int64_t out_dim = box_size + 2;
316 317 318
    auto* scores_data = scores.data<T>();
    auto* bboxes_data = bboxes.data<T>();
    auto* odata = outs->data<T>();
J
jerrywgz 已提交
319 320 321
    const T* sdata;
    Tensor bbox;
    bbox.Resize({scores.dims()[0], box_size});
322 323 324
    int count = 0;
    for (const auto& it : selected_indices) {
      int label = it.first;
D
dangqingqing 已提交
325
      const std::vector<int>& indices = it.second;
J
jerrywgz 已提交
326 327 328 329 330
      if (scores_size == 2) {
        SliceOneClass<T>(ctx, bboxes, label, &bbox);
      } else {
        sdata = scores_data + label * predict_dim;
      }
331

332
      for (size_t j = 0; j < indices.size(); ++j) {
333
        int idx = indices[j];
J
jerrywgz 已提交
334 335 336 337 338
        odata[count * out_dim] = label;  // label
        const T* bdata;
        if (scores_size == 3) {
          bdata = bboxes_data + idx * box_size;
          odata[count * out_dim + 1] = sdata[idx];  // score
339 340 341
          if (oindices != nullptr) {
            oindices[count] = offset + idx;
          }
J
jerrywgz 已提交
342 343 344
        } else {
          bdata = bbox.data<T>() + idx * box_size;
          odata[count * out_dim + 1] = *(scores_data + idx * class_num + label);
345 346 347
          if (oindices != nullptr) {
            oindices[count] = offset + idx * class_num + label;
          }
J
jerrywgz 已提交
348
        }
Y
Yipeng 已提交
349 350
        // xmin, ymin, xmax, ymax or multi-points coordinates
        std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
D
dangqingqing 已提交
351
        count++;
352 353 354 355 356
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
J
jerrywgz 已提交
357 358
    auto* boxes = ctx.Input<LoDTensor>("BBoxes");
    auto* scores = ctx.Input<LoDTensor>("Scores");
359
    auto* outs = ctx.Output<LoDTensor>("Out");
360 361
    bool return_index = ctx.HasOutput("Index") ? true : false;
    auto index = ctx.Output<LoDTensor>("Index");
362 363
    bool has_roisnum = ctx.HasInput("RoisNum") ? true : false;
    auto rois_num = ctx.Input<Tensor>("RoisNum");
364
    auto score_dims = scores->dims();
365
    auto score_size = score_dims.size();
L
Leo Chen 已提交
366
    auto& dev_ctx = ctx.template device_context<phi::CPUContext>();
367 368 369

    std::vector<std::map<int, std::vector<int>>> all_indices;
    std::vector<size_t> batch_starts = {0};
J
jerrywgz 已提交
370 371 372 373
    int64_t batch_size = score_dims[0];
    int64_t box_dim = boxes->dims()[2];
    int64_t out_dim = box_dim + 2;
    int num_nmsed_out = 0;
374
    Tensor boxes_slice, scores_slice;
375 376 377 378 379 380
    int n = 0;
    if (has_roisnum) {
      n = score_size == 3 ? batch_size : rois_num->numel();
    } else {
      n = score_size == 3 ? batch_size : boxes->lod().back().size() - 1;
    }
381
    for (int i = 0; i < n; ++i) {
382
      std::map<int, std::vector<int>> indices;
383 384 385 386 387 388
      if (score_size == 3) {
        scores_slice = scores->Slice(i, i + 1);
        scores_slice.Resize({score_dims[1], score_dims[2]});
        boxes_slice = boxes->Slice(i, i + 1);
        boxes_slice.Resize({score_dims[2], box_dim});
      } else {
389 390 391 392 393 394
        std::vector<size_t> boxes_lod;
        if (has_roisnum) {
          boxes_lod = GetNmsLodFromRoisNum(rois_num);
        } else {
          boxes_lod = boxes->lod().back();
        }
395 396 397 398 399
        if (boxes_lod[i] == boxes_lod[i + 1]) {
          all_indices.push_back(indices);
          batch_starts.push_back(batch_starts.back());
          continue;
        }
400 401
        scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
        boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
J
jerrywgz 已提交
402
      }
403 404
      MultiClassNMS(
          ctx, scores_slice, boxes_slice, score_size, &indices, &num_nmsed_out);
405 406
      all_indices.push_back(indices);
      batch_starts.push_back(batch_starts.back() + num_nmsed_out);
J
jerrywgz 已提交
407 408 409 410
    }

    int num_kept = batch_starts.back();
    if (num_kept == 0) {
411 412 413 414 415 416 417 418
      if (return_index) {
        outs->mutable_data<T>({0, out_dim}, ctx.GetPlace());
        index->mutable_data<int>({0, 1}, ctx.GetPlace());
      } else {
        T* od = outs->mutable_data<T>({1, 1}, ctx.GetPlace());
        od[0] = -1;
        batch_starts = {0, 1};
      }
J
jerrywgz 已提交
419 420
    } else {
      outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
421 422
      int offset = 0;
      int* oindices = nullptr;
423 424 425 426 427 428
      for (int i = 0; i < n; ++i) {
        if (score_size == 3) {
          scores_slice = scores->Slice(i, i + 1);
          boxes_slice = boxes->Slice(i, i + 1);
          scores_slice.Resize({score_dims[1], score_dims[2]});
          boxes_slice.Resize({score_dims[2], box_dim});
429 430 431
          if (return_index) {
            offset = i * score_dims[2];
          }
432
        } else {
433 434 435 436 437 438
          std::vector<size_t> boxes_lod;
          if (has_roisnum) {
            boxes_lod = GetNmsLodFromRoisNum(rois_num);
          } else {
            boxes_lod = boxes->lod().back();
          }
439
          if (boxes_lod[i] == boxes_lod[i + 1]) continue;
440 441
          scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
          boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
442 443 444
          if (return_index) {
            offset = boxes_lod[i] * score_dims[1];
          }
J
jerrywgz 已提交
445
        }
446

447 448 449 450
        int64_t s = batch_starts[i];
        int64_t e = batch_starts[i + 1];
        if (e > s) {
          Tensor out = outs->Slice(s, e);
451 452 453 454 455
          if (return_index) {
            int* output_idx =
                index->mutable_data<int>({num_kept, 1}, ctx.GetPlace());
            oindices = output_idx + s;
          }
456 457 458 459 460 461 462 463
          MultiClassOutput(dev_ctx,
                           scores_slice,
                           boxes_slice,
                           all_indices[i],
                           score_dims.size(),
                           &out,
                           oindices,
                           offset);
464 465 466
        }
      }
    }
467 468 469 470 471 472 473 474 475
    if (ctx.HasOutput("NmsRoisNum")) {
      auto* nms_rois_num = ctx.Output<Tensor>("NmsRoisNum");
      nms_rois_num->mutable_data<int>({n}, ctx.GetPlace());
      int* num_data = nms_rois_num->data<int>();
      for (int i = 1; i <= n; i++) {
        num_data[i - 1] = batch_starts[i] - batch_starts[i - 1];
      }
      nms_rois_num->Resize({n});
    }
476 477 478

    framework::LoD lod;
    lod.emplace_back(batch_starts);
479 480 481
    if (return_index) {
      index->set_lod(lod);
    }
482 483 484 485
    outs->set_lod(lod);
  }
};

D
dangqingqing 已提交
486
class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
487
 public:
Y
Yu Yang 已提交
488
  void Make() override {
D
dangqingqing 已提交
489
    AddInput("BBoxes",
J
jerrywgz 已提交
490 491
             "Two types of bboxes are supported:"
             "1. (Tensor) A 3-D Tensor with shape "
Y
Yipeng 已提交
492
             "[N, M, 4 or 8 16 24 32] represents the "
493 494
             "predicted locations of M bounding bboxes, N is the batch size. "
             "Each bounding box has four coordinate values and the layout is "
J
jerrywgz 已提交
495
             "[xmin, ymin, xmax, ymax], when box size equals to 4."
496 497
             "2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]"
             "M is the number of bounding boxes, C is the class number");
D
dangqingqing 已提交
498
    AddInput("Scores",
J
jerrywgz 已提交
499 500
             "Two types of scores are supported:"
             "1. (Tensor) A 3-D Tensor with shape [N, C, M] represents the "
D
dangqingqing 已提交
501 502 503
             "predicted confidence predictions. N is the batch size, C is the "
             "class number, M is number of bounding boxes. For each category "
             "there are total M scores which corresponding M bounding boxes. "
504 505 506 507
             " Please note, M is equal to the 2nd dimension of BBoxes. "
             "2. (LoDTensor) A 2-D LoDTensor with shape [M, C]. "
             "M is the number of bbox, C is the class number. In this case, "
             "Input BBoxes should be the second case with shape [M, C, 4].");
D
dangqingqing 已提交
508
    AddAttr<int>(
509
        "background_label",
翟飞跃 已提交
510
        "(int, default: 0) "
D
dangqingqing 已提交
511 512
        "The index of background label, the background label will be ignored. "
        "If set to -1, then all categories will be considered.")
513
        .SetDefault(0);
D
dangqingqing 已提交
514 515
    AddAttr<float>("score_threshold",
                   "(float) "
D
dangqingqing 已提交
516 517
                   "Threshold to filter out bounding boxes with low "
                   "confidence score. If not provided, consider all boxes.");
D
dangqingqing 已提交
518 519 520
    AddAttr<int>("nms_top_k",
                 "(int64_t) "
                 "Maximum number of detections to be kept according to the "
T
tianshuo78520a 已提交
521
                 "confidences after the filtering detections based on "
D
dangqingqing 已提交
522
                 "score_threshold");
523
    AddAttr<float>("nms_threshold",
翟飞跃 已提交
524
                   "(float, default: 0.3) "
D
dangqingqing 已提交
525
                   "The threshold to be used in NMS.")
526 527 528
        .SetDefault(0.3);
    AddAttr<float>("nms_eta",
                   "(float) "
D
dangqingqing 已提交
529
                   "The parameter for adaptive NMS.")
530
        .SetDefault(1.0);
D
dangqingqing 已提交
531 532 533 534
    AddAttr<int>("keep_top_k",
                 "(int64_t) "
                 "Number of total bboxes to be kept per image after NMS "
                 "step. -1 means keeping all bboxes after NMS step.");
J
jerrywgz 已提交
535
    AddAttr<bool>("normalized",
J
jerrywgz 已提交
536
                  "(bool, default true) "
J
jerrywgz 已提交
537 538
                  "Whether detections are normalized.")
        .SetDefault(true);
539 540 541
    AddOutput("Out",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
              "detections. Each row has 6 values: "
Y
Yipeng 已提交
542 543 544 545 546 547
              "[label, confidence, xmin, ymin, xmax, ymax] or "
              "(LoDTensor) A 2-D LoDTensor with shape [No, 10] represents the "
              "detections. Each row has 10 values: "
              "[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the "
              "total number of detections in this mini-batch."
              "For each instance, "
548 549 550 551
              "the offsets in first dimension are called LoD, the number of "
              "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
              "no detected bbox.");
    AddComment(R"DOC(
D
dangqingqing 已提交
552
This operator is to do multi-class non maximum suppression (NMS) on a batched
553
of boxes and scores.
D
dangqingqing 已提交
554 555 556 557 558 559
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
560
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
D
dangqingqing 已提交
561 562
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
563 564 565
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
566
means there is no detected bbox for this image.
567 568 569 570
)DOC");
  }
};

571 572 573 574 575 576 577 578 579 580 581 582 583 584
class MultiClassNMS2Op : public MultiClassNMSOp {
 public:
  MultiClassNMS2Op(const std::string& type,
                   const framework::VariableNameMap& inputs,
                   const framework::VariableNameMap& outputs,
                   const framework::AttributeMap& attrs)
      : MultiClassNMSOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext* ctx) const override {
    MultiClassNMSOp::InferShape(ctx);

    auto score_dims = ctx->GetInputDim("Scores");
    auto score_size = score_dims.size();
    if (score_size == 3) {
585
      ctx->SetOutputDim("Index", {-1, 1});
586 587 588
    } else {
      ctx->SetOutputDim("Index", {-1, 1});
    }
589 590 591
    if (!ctx->IsRuntime()) {
      ctx->SetLoDLevel("Index", std::max(ctx->GetLoDLevel("BBoxes"), 1));
    }
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
  }
};

class MultiClassNMS2OpMaker : public MultiClassNMSOpMaker {
 public:
  void Make() override {
    MultiClassNMSOpMaker::Make();
    AddOutput("Index",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 1] represents the "
              "index of selected bbox. The index is the absolute index cross "
              "batches.")
        .AsIntermediate();
  }
};

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
class MultiClassNMS3Op : public MultiClassNMS2Op {
 public:
  MultiClassNMS3Op(const std::string& type,
                   const framework::VariableNameMap& inputs,
                   const framework::VariableNameMap& outputs,
                   const framework::AttributeMap& attrs)
      : MultiClassNMS2Op(type, inputs, outputs, attrs) {}
};

class MultiClassNMS3OpMaker : public MultiClassNMS2OpMaker {
 public:
  void Make() override {
    MultiClassNMS2OpMaker::Make();
    AddInput("RoisNum",
             "(Tensor) The number of RoIs in shape (B),"
             "B is the number of images")
        .AsDispensable();
    AddOutput("NmsRoisNum", "(Tensor), The number of NMS RoIs in each image")
        .AsDispensable();
  }
};

629 630 631
}  // namespace operators
}  // namespace paddle

632 633 634 635
DECLARE_INFER_SHAPE_FUNCTOR(multiclass_nms3,
                            MultiClassNMSShapeFunctor,
                            PD_INFER_META(phi::MultiClassNMSInferMeta));

636
namespace ops = paddle::operators;
H
hong 已提交
637
REGISTER_OPERATOR(
638 639 640
    multiclass_nms,
    ops::MultiClassNMSOp,
    ops::MultiClassNMSOpMaker,
H
hong 已提交
641 642
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
643 644
REGISTER_OP_CPU_KERNEL(multiclass_nms,
                       ops::MultiClassNMSKernel<float>,
D
dangqingqing 已提交
645
                       ops::MultiClassNMSKernel<double>);
H
hong 已提交
646
REGISTER_OPERATOR(
647 648 649
    multiclass_nms2,
    ops::MultiClassNMS2Op,
    ops::MultiClassNMS2OpMaker,
H
hong 已提交
650 651
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
652 653
REGISTER_OP_CPU_KERNEL(multiclass_nms2,
                       ops::MultiClassNMSKernel<float>,
654
                       ops::MultiClassNMSKernel<double>);
655 656

REGISTER_OPERATOR(
657 658 659
    multiclass_nms3,
    ops::MultiClassNMS3Op,
    ops::MultiClassNMS3OpMaker,
660
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
661 662
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
    MultiClassNMSShapeFunctor);