py_layer.py 20.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.fluid.framework import dygraph_only
L
Leo Chen 已提交
17 18
from paddle.fluid.dygraph.amp.auto_cast import amp_state
from paddle.amp.auto_cast import auto_cast
19
from paddle.fluid import core
20
__all__ = []
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50


class PyLayerContext(object):
    """
    The object of this class is a context that is used in PyLayer to enhance the function.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.autograd import PyLayer

            class cus_tanh(PyLayer):
                @staticmethod
                def forward(ctx, x):
                    # ctx is a object of PyLayerContext.
                    y = paddle.tanh(x)
                    ctx.save_for_backward(y)
                    return y

                @staticmethod
                def backward(ctx, dy):
                    # ctx is a object of PyLayerContext.
                    y, = ctx.saved_tensor()
                    grad = dy * (1 - paddle.square(y))
                    return grad
    """

    def __init__(self):
        self.container = None
L
Leo Chen 已提交
51
        self._amp_state = amp_state()
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

    def save_for_backward(self, *tensors):
        """
        Saves given tensors that backward need. Use ``saved_tensor`` in the `backward` to get the saved tensors.
        
        .. note::
            This API should be called at most once, and only inside `forward`. 

        Args:
            tensors(list of Tensors): Tensors to be stored.

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                from paddle.autograd import PyLayer

                class cus_tanh(PyLayer):
                    @staticmethod
                    def forward(ctx, x):
                        # ctx is a context object that store some objects for backward.
                        y = paddle.tanh(x)
                        # Pass tensors to backward.
                        ctx.save_for_backward(y)
                        return y

                    @staticmethod
                    def backward(ctx, dy):
                        # Get the tensors passed by forward.
                        y, = ctx.saved_tensor()
                        grad = dy * (1 - paddle.square(y))
                        return grad

        """
        self.container = tensors

    def saved_tensor(self):
        """
        Get the tensors stored by ``save_for_backward``.

        Returns:
            list of Tensors or None: If context contains tensors stored by `save_for_backward`, 
            then return these tensors, otherwise return None.

        Examples:
            .. code-block:: python

                import paddle
                from paddle.autograd import PyLayer

                class cus_tanh(PyLayer):
                    @staticmethod
                    def forward(ctx, x):
                        # ctx is a context object that store some objects for backward.
                        y = paddle.tanh(x)
                        # Pass tensors to backward.
                        ctx.save_for_backward(y)
                        return y

                    @staticmethod
                    def backward(ctx, dy):
                        # Get the tensors passed by forward.
                        y, = ctx.saved_tensor()
                        grad = dy * (1 - paddle.square(y))
                        return grad
        """

        return self.container


def with_mateclass(meta, *bases):
    class impl(meta):
        def __new__(cls, name, temp_bases, attrs):
            return meta(name, bases, attrs)

    return type.__new__(impl, "impl", (), {})


class CPyLayer(object):
    @classmethod
    @dygraph_only
    def apply(cls, *args, **kwargs):
        """
        After building the custom PyLayer, run it through the ``apply``.

        Args:
            *args(tuple): input of PyLayer.
            **kwargs(dict): input of PyLayer.

        Returns:
            tensors or other types : output of PyLayer.
        
        Examples:
            .. code-block:: python

                import paddle
                from paddle.autograd import PyLayer

                class cus_tanh(PyLayer):
                    @staticmethod
                    def forward(ctx, x, func1, func2=paddle.square):
                        ctx.func = func2
                        y = func1(x)
                        # Pass tensors to backward.
                        ctx.save_for_backward(y)
                        return y

                    @staticmethod
                    def backward(ctx, dy):
                        # Get the tensors passed by forward.
                        y, = ctx.saved_tensor()
                        grad = dy * (1 - ctx.func(y))
                        return grad


                data = paddle.randn([2, 3], dtype="float64")
                data.stop_gradient = False
                # run custom Layer.
                z = cus_tanh.apply(data, func1=paddle.tanh)
        """
        place = paddle.fluid.framework._current_expected_place()
        with paddle.fluid.dygraph.no_grad():
            return core.pylayer_apply(place, cls, *args, **kwargs)


class PyLayerBackward(PyLayerContext):
    def backward(self, *args, **kwargs):
182 183
        with paddle.fluid.dygraph.guard():
            with paddle.fluid.dygraph.no_grad():
L
Leo Chen 已提交
184 185 186 187 188 189 190
                if self._amp_state and 'enable' in self._amp_state and self._amp_state[
                        'enable']:
                    with auto_cast(**args[0]._amp_state):
                        return self._forward_cls.backward(*args, **kwargs)
                else:

                    return self._forward_cls.backward(*args, **kwargs)
191
                return self._forward_cls.backward(*args, **kwargs)
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329


class LayerMeta(type):
    def __init__(cls, name, bases, attrs):
        cls._backward_function = type(name + '_backward', (PyLayerBackward, ),
                                      {"_forward_cls": cls})

        return super(LayerMeta, cls).__init__(name, bases, attrs)


class PyLayer(with_mateclass(LayerMeta, CPyLayer)):
    """
    Build a custom `Layer` by creating subclasses. Subclasses need to follow the following rules:
    1. Subclasses contain `forward` and `backward` function. Both forward and backward are @staticmethod.
    Their first argument should be a context and `None` can not be included in the returned result.
    2. Input of backward contains a context as the first argument, and the rest arguments are the 
    gradient of forward's output tensors. so the number of backward's input tensors equal to 
    the number of forward output tensors. If you need the forward's inputs or outputs in `backward`, 
    you can use `save_for_backward` to store the required tensors, and then use them in the backward.
    3. Output of backward function can only be `Tensor` or tuple/list of `Tensor`.
    Output tensors of backward are the gradient of forward's input tensors, 
    so the number of backward's output tensors equal to the number of forward input tensors.
    After building the custom Layer, run it through the `apply` method.
    

    Examples:
        .. code-block:: python

            import paddle
            from paddle.autograd import PyLayer

            # Inherit from PyLayer
            class cus_tanh(PyLayer):
                @staticmethod
                def forward(ctx, x, func1, func2=paddle.square):
                    # ctx is a context object that store some objects for backward.
                    ctx.func = func2
                    y = func1(x)
                    # Pass tensors to backward.
                    ctx.save_for_backward(y)
                    return y

                @staticmethod
                # forward has only one output, so there is only one gradient in the input of backward.
                def backward(ctx, dy):
                    # Get the tensors passed by forward.
                    y, = ctx.saved_tensor()
                    grad = dy * (1 - ctx.func(y))
                    # forward has only one input, so only one gradient tensor is returned.
                    return grad


            data = paddle.randn([2, 3], dtype="float64")
            data.stop_gradient = False
            z = cus_tanh.apply(data, func1=paddle.tanh)
            z.mean().backward()

            print(data.grad)

    """

    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        It is to be overloaded by subclasses. It must accept a object of `PyLayerContext` as 
        the first argument, followed by any number of arguments (tensors or other types). 
        `None` can not be included in the returned result.

        Args:
            *args(tuple): input of PyLayer.
            **kwargs(dict): input of PyLayer.

        Returns:
            tensors or other types : output of PyLayer.
        
        Examples:
            .. code-block:: python

                import paddle
                from paddle.autograd import PyLayer

                class cus_tanh(PyLayer):
                    @staticmethod
                    def forward(ctx, x):
                        y = paddle.tanh(x)
                        # Pass tensors to backward.
                        ctx.save_for_backward(y)
                        return y

                    @staticmethod
                    def backward(ctx, dy):
                        # Get the tensors passed by forward.
                        y, = ctx.saved_tensor()
                        grad = dy * (1 - paddle.square(y))
                        return grad
        """
        raise NotImplementedError(
            "You must implement the forward function for PyLayer.")

    @staticmethod
    def backward(ctx, *args, **kwargs):
        """
        This is a function to calculate the gradient. It is to be overloaded by subclasses. 
        It must accept a object of `PyLayerContext` as the first argument, and the rest 
        arguments are the gradient of forward's output tensors. Output tensors of backward 
        are the gradient of forward's input tensors.

        Args:
            *args(tuple): The gradient of forward's output tensor(s).
            **kwargs(dict): The gradient of forward's output tensor(s).

        Returns:
            Tensor or list of Tensors: The gradient of forward's input tensor(s).
        
        Examples:
            .. code-block:: python

                import paddle
                from paddle.autograd import PyLayer

                class cus_tanh(PyLayer):
                    @staticmethod
                    def forward(ctx, x):
                        y = paddle.tanh(x)
                        # Pass tensors to backward.
                        ctx.save_for_backward(y)
                        return y

                    @staticmethod
                    def backward(ctx, dy):
                        # Get the tensors passed by forward.
                        y, = ctx.saved_tensor()
                        grad = dy * (1 - paddle.square(y))
                        return grad
        """

        raise NotImplementedError(
            "You must implement the backward function for PyLayer.")
W
wanghuancoder 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598


class EagerPyLayerContext(object):
    def save_for_backward(self, *tensors):
        """
        Saves given tensors that backward need. Use ``saved_tensor`` in the `backward` to get the saved tensors.
        
        .. note::
            This API should be called at most once, and only inside `forward`. 

        Args:
            tensors(list of Tensors): Tensors to be stored.

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                from paddle.autograd import PyLayer

                class cus_tanh(PyLayer):
                    @staticmethod
                    def forward(ctx, x):
                        # ctx is a context object that store some objects for backward.
                        y = paddle.tanh(x)
                        # Pass tensors to backward.
                        ctx.save_for_backward(y)
                        return y

                    @staticmethod
                    def backward(ctx, dy):
                        # Get the tensors passed by forward.
                        y, = ctx.saved_tensor()
                        grad = dy * (1 - paddle.square(y))
                        return grad

        """
        self.container = tensors

    def saved_tensor(self):
        """
        Get the tensors stored by ``save_for_backward``.

        Returns:
            list of Tensors or None: If context contains tensors stored by `save_for_backward`, 
            then return these tensors, otherwise return None.

        Examples:
            .. code-block:: python

                import paddle
                from paddle.autograd import PyLayer

                class cus_tanh(PyLayer):
                    @staticmethod
                    def forward(ctx, x):
                        # ctx is a context object that store some objects for backward.
                        y = paddle.tanh(x)
                        # Pass tensors to backward.
                        ctx.save_for_backward(y)
                        return y

                    @staticmethod
                    def backward(ctx, dy):
                        # Get the tensors passed by forward.
                        y, = ctx.saved_tensor()
                        grad = dy * (1 - paddle.square(y))
                        return grad
        """
        return self.container

    def mark_dirty(self, *args):
        self.dirty_tensors = args

    def mark_non_differentiable(self, *args):
        """
        Marks outputs as non-differentiable.
        This should be called at most once, only from inside thethe `forward` method, 
        and all arguments should be tensor outputs.

        This will mark outputs as not requiring gradients, increasing the
        efficiency of backward computation. You still need to accept a gradient
        for each output in `backward`, but it's always going to
        be a zero tensor with the same shape as the shape of a corresponding
        output.

        Examples:
            .. code-block:: python

                import paddle
                from paddle.autograd import PyLayer
                import numpy as np

                class Tanh(PyLayer):
                    @staticmethod
                    def forward(ctx, x):
                        a = x + x
                        b = x + x + x
                        ctx.mark_non_differentiable(a)
                        return a, b

                    @staticmethod
                    def backward(ctx, grad_a, grad_b):
                        assert np.equal(grad_a.numpy(), paddle.zeros([1]).numpy())
                        assert np.equal(grad_b.numpy(), paddle.ones([1], dtype="float64").numpy())
                        return grad_b

                x = paddle.ones([1], dtype="float64")
                x.stop_gradient = False
                a, b = Tanh.apply(x)
                b.sum().backward()
        """
        self.non_differentiable = args

    def set_materialize_grads(self, value: bool):
        """
        Sets whether to materialize output grad tensors. Default is True.

        This should be called only from inside the `forward` method.

        If True, undefined output grad tensors will be expanded to tensors full
        of zeros prior to calling the `backward` method.

        If False, undefined output grad tensors will be None.

        Examples:
            .. code-block:: python

                import paddle
                from paddle.autograd import PyLayer
                import numpy as np

                class Tanh(PyLayer):
                    @staticmethod
                    def forward(ctx, x):
                        return x, x+x

                    @staticmethod
                    def backward(ctx, grad, grad2):
                        assert np.equal(grad2.numpy(), paddle.zeros([1]).numpy())
                        return grad

                class Tanh2(PyLayer):
                    @staticmethod
                    def forward(ctx, x):
                        ctx.set_materialize_grads(False)
                        return x, x+x

                    @staticmethod
                    def backward(ctx, grad, grad2):
                        assert grad2==None
                        return grad

                x = paddle.ones([1], dtype="float64")
                x.stop_gradient = False
                Tanh.apply(x)[0].backward()

                x2 = paddle.ones([1], dtype="float64")
                x2.stop_gradient = False
                Tanh2.apply(x2)[0].backward()
        """
        self.materialize_grads = value


class EagerPyLayerBackward(core.eager.PyLayer, EagerPyLayerContext):
    def backward(self, *args):
        return self._forward_cls.backward(self, *args)


class EagerPyLayerMeta(type):
    def __init__(cls, name, bases, attrs):
        cls._backward_function = type(name + '_backward',
                                      (EagerPyLayerBackward, ),
                                      {"_forward_cls": cls})

        return super(EagerPyLayerMeta, cls).__init__(name, bases, attrs)


class EagerPyLayer(
        with_mateclass(EagerPyLayerMeta, core.eager.PyLayer,
                       EagerPyLayerContext)):
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        It is to be overloaded by subclasses. It must accept a object of `PyLayerContext` as 
        the first argument, followed by any number of arguments (tensors or other types). 
        `None` can not be included in the returned result.

        Args:
            *args(tuple): input of PyLayer.
            **kwargs(dict): input of PyLayer.

        Returns:
            tensors or other types : output of PyLayer.
        
        Examples:
            .. code-block:: python

                import paddle
                from paddle.autograd import PyLayer

                class cus_tanh(PyLayer):
                    @staticmethod
                    def forward(ctx, x):
                        y = paddle.tanh(x)
                        # Pass tensors to backward.
                        ctx.save_for_backward(y)
                        return y

                    @staticmethod
                    def backward(ctx, dy):
                        # Get the tensors passed by forward.
                        y, = ctx.saved_tensor()
                        grad = dy * (1 - paddle.square(y))
                        return grad
        """
        raise NotImplementedError(
            "You must implement the forward function for PyLayer.")

    @staticmethod
    def backward(ctx, *args):
        """
        This is a function to calculate the gradient. It is to be overloaded by subclasses. 
        It must accept a object of `PyLayerContext` as the first argument, and the rest 
        arguments are the gradient of forward's output tensors. Output tensors of backward 
        are the gradient of forward's input tensors.

        Args:
            *args(tuple): The gradient of forward's output tensor(s).
            **kwargs(dict): The gradient of forward's output tensor(s).

        Returns:
            Tensor or list of Tensors: The gradient of forward's input tensor(s).
        
        Examples:
            .. code-block:: python

                import paddle
                from paddle.autograd import PyLayer

                class cus_tanh(PyLayer):
                    @staticmethod
                    def forward(ctx, x):
                        y = paddle.tanh(x)
                        # Pass tensors to backward.
                        ctx.save_for_backward(y)
                        return y

                    @staticmethod
                    def backward(ctx, dy):
                        # Get the tensors passed by forward.
                        y, = ctx.saved_tensor()
                        grad = dy * (1 - paddle.square(y))
                        return grad
        """

        raise NotImplementedError(
            "You must implement the backward function for PyLayer.")


def once_differentiable(backward):
    def wrapper(ctx, *args):
        with paddle.fluid.dygraph.no_grad():
            outputs = backward(ctx, *args)
        return outputs

    return wrapper