tensor_util.cc 13.4 KB
Newer Older
Y
Yang Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
Y
Yi Wang 已提交
14
#include "paddle/fluid/framework/tensor_util.h"
C
chengduoZH 已提交
15 16 17
#include <algorithm>
#include <limits>
#include <vector>
Y
Yu Yang 已提交
18
#include "../memory/allocation/allocator.h"
Y
yuyang18 已提交
19
#include "paddle/fluid/framework/data_type.h"
Y
Yang Yu 已提交
20 21 22

namespace paddle {
namespace framework {
Y
Yi Wang 已提交
23 24

void TensorCopy(const Tensor& src, const platform::Place& dst_place,
F
fengjiayi 已提交
25
                const platform::DeviceContext& ctx, Tensor* dst) {
Y
Yi Wang 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
  VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to "
          << dst_place;
  src.check_memory_size();

  dst->Resize(src.dims());
  dst->set_layout(src.layout());
  auto src_place = src.place();
  auto src_ptr = src.data<void>();

  auto dst_ptr = dst->mutable_data(dst_place, src.type());

  auto size = src.numel() * SizeOfType(src.type());

  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
    memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
                 boost::get<platform::CPUPlace>(src_place), src_ptr, size);
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto src_gpu_place = boost::get<platform::CUDAPlace>(src_place);
    auto dst_cpu_place = boost::get<platform::CPUPlace>(dst_place);
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE(platform::is_gpu_place(ctx_place));
    auto ctx_gpu_place = boost::get<platform::CUDAPlace>(ctx_place);
    PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place);
52
    auto stream =
F
fengjiayi 已提交
53
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
54
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
Y
Yi Wang 已提交
55 56 57 58 59 60 61 62
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_gpu_place(dst_place)) {
    auto src_cpu_place = boost::get<platform::CPUPlace>(src_place);
    auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place);
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE(platform::is_gpu_place(ctx_place));
    auto ctx_gpu_place = boost::get<platform::CUDAPlace>(ctx_place);
    PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place);
63
    auto stream =
F
fengjiayi 已提交
64
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
65
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
Y
Yi Wang 已提交
66 67 68 69 70 71
  } else if (platform::is_gpu_place(src_place) &&
             platform::is_gpu_place(dst_place)) {
    auto src_gpu_place = boost::get<platform::CUDAPlace>(src_place);
    auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place);
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE(platform::is_gpu_place(ctx_place));
72
    auto stream =
F
fengjiayi 已提交
73
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
C
chengduo 已提交
74 75 76 77 78 79 80
    if (platform::is_same_place(src_place, dst_place)) {
      memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                   stream);
    } else {
      if (platform::is_same_place(ctx_place, src_place)) {
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
C
chengduo 已提交
81
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
82
      } else if (platform::is_same_place(ctx_place, dst_place)) {
C
chengduo 已提交
83
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
84 85 86 87 88 89
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
      } else {
        PADDLE_THROW("ctx is not belong to dst_gpu_place or src_gpu_place.");
      }
    }
Y
Yi Wang 已提交
90 91 92 93 94 95 96 97
  }
#endif
}

void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst) {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  const platform::DeviceContext* dev_ctx;
C
chengduo 已提交
98
  if (platform::is_gpu_place(dst_place)) {
Y
Yi Wang 已提交
99
    dev_ctx = pool.Get(dst_place);
C
chengduo 已提交
100 101
  } else {
    dev_ctx = pool.Get(src.place());
Y
Yi Wang 已提交
102 103 104 105
  }
  TensorCopy(src, dst_place, *dev_ctx, dst);
}

F
fengjiayi 已提交
106 107 108 109 110 111 112 113 114
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst) {
  VLOG(3) << "TensorCopySync " << src.dims() << " from " << src.place()
          << " to " << dst_place;
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
  auto src_place = src.place();
  auto src_ptr = src.data<void>();
Y
Yu Yang 已提交
115 116
  auto dst_ptr =
      dst->mutable_data(dst_place, src.type(), memory::Allocator::kCrossDevice);
F
fengjiayi 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
  auto size = src.numel() * SizeOfType(src.type());
  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
    memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
                 boost::get<platform::CPUPlace>(src_place), src_ptr, size);
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto src_gpu_place = boost::get<platform::CUDAPlace>(src_place);
    auto dst_cpu_place = boost::get<platform::CPUPlace>(dst_place);
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_gpu_place(dst_place)) {
    auto src_cpu_place = boost::get<platform::CPUPlace>(src_place);
    auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place);
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, nullptr);
  } else if (platform::is_gpu_place(src_place) &&
             platform::is_gpu_place(dst_place)) {
    auto src_gpu_place = boost::get<platform::CUDAPlace>(src_place);
    auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place);
    memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
  }
#endif
}

Y
Yang Yu 已提交
142 143 144 145 146 147 148 149 150 151 152 153
template <typename Predicate, typename DevCtx>
struct AnyDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

  AnyDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx,
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
D
dzhwinter 已提交
154
  void apply() const {
Y
Yang Yu 已提交
155 156
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenScalar<bool>::From(*out_);
Y
Yang Yu 已提交
157
    // return any of predicate_(t) is true.
Y
Yang Yu 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    o.device(*ctx_.eigen_device()) = predicate_(t).any();
  }
};

template <typename Predicate, typename DevCtx>
inline void AnyImpl(Predicate predicate, const framework::Tensor& tensor,
                    const DevCtx& ctx, framework::Tensor* out) {
  VisitDataType(ToDataType(tensor.type()), AnyDTypeVisitor<Predicate, DevCtx>(
                                               predicate, tensor, ctx, out));
}

template <typename Predicate>
struct AnyVisitor : public boost::static_visitor<bool> {
  const framework::Tensor& tensor_;
  Predicate predicate_;

  AnyVisitor(const framework::Tensor& tensor, Predicate predicate)
      : tensor_(tensor), predicate_(std::move(predicate)) {}

  template <typename Place>
  bool operator()(const Place& place) const {
    framework::Tensor out;
    out.Resize({1});
    out.mutable_data<bool>(place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    AnyImpl(predicate_, tensor_, *ctx, &out);
    return this->GetResult(out, place);
  }

  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPlace& gpu) const {
    platform::CPUPlace cpu;
    framework::Tensor tmp;
    tmp.Resize({1});
    tmp.mutable_data<bool>(cpu);
Y
Yang Yu 已提交
193 194
    auto gpuctx = platform::DeviceContextPool::Instance().Get(gpu);
    gpuctx->Wait();
Y
Yi Wang 已提交
195
    TensorCopy(out, cpu, *gpuctx, &tmp);
Y
Yang Yu 已提交
196
    gpuctx->Wait();
Y
Yang Yu 已提交
197 198 199 200 201 202 203
    return GetResult(tmp, cpu);
  }

  bool GetResult(const framework::Tensor& out,
                 const platform::CPUPlace& cpu) const {
    return *out.data<bool>();
  }
C
chengduoZH 已提交
204 205 206 207 208

  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPinnedPlace& cpu) const {
    return *out.data<bool>();
  }
Y
Yang Yu 已提交
209 210 211 212 213 214 215 216 217
};

template <typename Predicate>
inline bool Any(const framework::Tensor& tensor, Predicate predicate) {
  AnyVisitor<Predicate> visitor(tensor, predicate);
  auto place = tensor.place();
  return platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
218
struct ContainsNANPredicate {
Y
Yang Yu 已提交
219 220 221
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isnan()) {
Y
Yang Yu 已提交
222
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
223 224 225 226
    return eigen_vec.isnan();
  }
};

Y
Yi Wang 已提交
227 228
bool TensorContainsNAN(const framework::Tensor& tensor) {
  ContainsNANPredicate predicate;
Y
Yang Yu 已提交
229 230 231
  return Any(tensor, predicate);
}

Y
Yi Wang 已提交
232
struct ContainsInfPredicate {
Y
Yang Yu 已提交
233 234 235
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isinf()) {
Y
Yang Yu 已提交
236
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
237 238 239 240
    return eigen_vec.isinf();
  }
};

Y
Yi Wang 已提交
241 242
bool TensorContainsInf(const framework::Tensor& tensor) {
  ContainsInfPredicate predicate;
Y
Yang Yu 已提交
243 244 245
  return Any(tensor, predicate);
}

Y
Yi Wang 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx) {
  {  // the 1st field, uint32_t version
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char*>(&version), sizeof(version));
  }
  {  // the 2nd field, tensor description
     // int32_t  size
     // void*    protobuf message
    proto::VarType::TensorDesc desc;
    desc.set_data_type(framework::ToDataType(tensor.type()));
    auto dims = framework::vectorize(tensor.dims());
    auto* pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
    std::copy(dims.begin(), dims.end(), pb_dims->begin());
    int32_t size = desc.ByteSize();
    os.write(reinterpret_cast<const char*>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
Y
yuyang18 已提交
267 268
    uint64_t size = tensor.numel() * framework::SizeOfType(tensor.type());

Y
Yi Wang 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    auto* data_ptr = tensor.data<void>();
    PADDLE_ENFORCE(size < std::numeric_limits<std::streamsize>::max(),
                   "Index overflow when writing tensor");
    if (platform::is_gpu_place(tensor.place())) {
#ifdef PADDLE_WITH_CUDA
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& gpu_dev_ctx =
          static_cast<const platform::CUDADeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
        memory::Copy(cpu, buf.get(),
                     boost::get<platform::CUDAPlace>(tensor.place()),
                     reinterpret_cast<const void*>(data), size_to_write,
                     gpu_dev_ctx.stream());
        gpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW("Unexpected branch");
#endif
    } else {
      os.write(static_cast<const char*>(data_ptr),
               static_cast<std::streamsize>(size));
    }
  }
}

struct DeserializedDataFunctor {
  DeserializedDataFunctor(void** buf, Tensor* tensor,
                          const platform::Place& place)
      : buf_(buf), tensor_(tensor), place_(place) {}

  template <typename T>
D
dzhwinter 已提交
307
  void apply() {
Y
Yi Wang 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    *buf_ = tensor_->mutable_data<T>(place_);
  }

  void** buf_;
  Tensor* tensor_;
  platform::Place place_;
};

void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));
  PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
  proto::VarType::TensorDesc desc;
  {  // int32_t size
     // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
    PADDLE_ENFORCE(desc.ParseFromArray(buf.get(), size),
                   "Cannot parse tensor desc");
  }
  {  // read tensor
    std::vector<int64_t> dims;
    dims.reserve(static_cast<size_t>(desc.dims().size()));
    std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
    tensor->Resize(framework::make_ddim(dims));
    void* buf;
    auto ctx = platform::CPUDeviceContext();
Y
yuyang18 已提交
338 339 340
    size_t size =
        tensor->numel() *
        framework::SizeOfType(framework::ToTypeIndex(desc.data_type()));
Y
Yi Wang 已提交
341 342 343 344 345 346 347
    if (platform::is_gpu_place(dev_ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
      Tensor cpu_tensor;
      cpu_tensor.Resize(framework::make_ddim(dims));
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
Y
yuyang18 已提交
348
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
349 350 351 352 353 354 355 356 357
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
#else
      PADDLE_THROW("Unexpected branch");
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
Y
yuyang18 已提交
358
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
359 360 361 362
    }
  }
}

Y
Yang Yu 已提交
363 364
}  // namespace framework
}  // namespace paddle