warpctc_op.cc 8.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yiqun Liu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/warpctc_op.h"
Y
Yiqun Liu 已提交
16

H
Huihuang Zheng 已提交
17 18
#include <memory>

W
Wu Yi 已提交
19 20 21 22
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif

Y
Yiqun Liu 已提交
23 24 25 26 27 28 29 30
namespace paddle {
namespace operators {

class WarpCTCOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
31 32 33 34 35
    OP_INOUT_CHECK(ctx->HasInput("Logits"), "Input", "Logits", "WarpCTC");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "WarpCTC");
    OP_INOUT_CHECK(ctx->HasOutput("WarpCTCGrad"), "Output", "WarpCTCGrad",
                   "WarpCTC");
    OP_INOUT_CHECK(ctx->HasOutput("Loss"), "Output", "Loss", "WarpCTC");
Y
Yiqun Liu 已提交
36 37 38

    auto logits_dims = ctx->GetInputDim("Logits");
    int blank = ctx->Attrs().Get<int>("blank");
39 40 41 42 43 44 45 46
    int sequence_width = 0;

    if (ctx->HasInput("LogitsLength")) {
      sequence_width = logits_dims[2];
    } else {
      sequence_width =
          static_cast<int>(framework::product(logits_dims) / logits_dims[0]);
    }
47 48 49 50 51 52 53 54 55 56 57 58

    PADDLE_ENFORCE_GE(
        blank, 0, platform::errors::InvalidArgument(
                      "The value of Attr(blank) should be in interval [0, %d), "
                      "but received %d",
                      blank));
    PADDLE_ENFORCE_LT(
        blank, sequence_width,
        platform::errors::InvalidArgument(
            "The value of Attr(blank) should be in interval [0, %d), "
            "but received %d",
            blank));
59

Y
Yiqun Liu 已提交
60
    // TODO(liuyiqun): it is tricky to set the wrong dimension here.
W
whs 已提交
61
    ctx->SetOutputDim("Loss", {-1, 1});
Y
Yiqun Liu 已提交
62 63 64 65 66
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
W
Wu Yi 已提交
67 68
    framework::LibraryType library_{framework::LibraryType::kPlain};
    framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
69
    return framework::OpKernelType(
70 71
        OperatorWithKernel::IndicateVarDataType(ctx, "Logits"), ctx.GetPlace(),
        layout_, library_);
Y
Yiqun Liu 已提交
72 73 74 75 76
  }
};

class WarpCTCOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
77
  void Make() override {
Y
Yiqun Liu 已提交
78
    AddInput("Logits",
79 80 81 82 83 84 85 86 87 88 89
             "(2-D LoDTensor<float>) or (3-D Tensor<float>), the "
             "unscaled probabilities of variable-length sequences."
             "When is a 2-D Tensor with LoD information, "
             "it's shape is [Lp, num_classes + 1], "
             "where Lp is the sum of all input sequences' length "
             "and num_classes is the true number of classes "
             "(not including the blank label)."
             "When it is 3-D Tensor, it's shape is "
             "[max_logit_length, batch_size, num_classes + 1], "
             "where max_logit_length is the length of the longest "
             "logit sequence.");
Y
Yiqun Liu 已提交
90
    AddInput("Label",
91 92 93 94 95 96 97 98 99 100 101 102 103 104
             "(2-D LoDTensor<int>) or (2-D Tensor<int>), the "
             "ground truth of variable-length sequence. "
             "When it is a 2-D Tensor with LoD information, "
             "it is of the shape [Lg, 1], where Lg is th sum of "
             "all labels' length."
             "When it is a 2-D Tensor<int>, it's shape is also [Lg, 1].");
    AddInput("LogitsLength",
             "1-D Tensor<int64_t>. "
             "Input sequence length for Logits when Logits is a 3-D tensor.")
        .AsDispensable();
    AddInput("LabelLength",
             "1-D Tensor<int64_t>. "
             "Target sequence length for Label when Label is a 2-D tensor.")
        .AsDispensable();
Y
Yiqun Liu 已提交
105
    AddOutput("WarpCTCGrad",
106
              "(Tensor), a temporary "
Y
Yiqun Liu 已提交
107 108 109 110 111
              "output Tensor to store the gradients of warp-ctc, which is "
              "computed with loss together in one call. It is a 3-D Tensor of "
              "the shape [max_sequence_length, batch_size, num_classes + 1].")
        .AsIntermediate();
    AddOutput("Loss",
112
              "(Tensor), the Connectionist "
Y
Yiqun Liu 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
              "Temporal Classification (CTC) loss, which is a 2-D Tensor of "
              "the shape [batch_size, 1]");
    AddAttr<int>("blank",
                 "(int, default: 0), the blank label of Connectionist "
                 "Temporal Classification (CTC) loss, which is in the "
                 "half-opened interval [0, num_classes + 1).")
        .SetDefault(0);
    AddAttr<bool>("norm_by_times",
                  "(bool, default: false), whether to "
                  "normalize the gradients by the number of time-step, "
                  "which is also the sequence's length.")
        .SetDefault(false);
    AddComment(R"DOC(
An operator integrating the open-source
[warp-ctc](https://github.com/baidu-research/warp-ctc) library, which is used in
[Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin](
https://arxiv.org/pdf/1512.02595v1.pdf),
to compute Connectionist Temporal Classification (CTC) loss.
It can be aliased as softmax with ctc, since a native softmax activation is
T
tianshuo78520a 已提交
132
interated to the warp-ctc library, to to normalize values for each row of the
Y
Yiqun Liu 已提交
133 134
input tensor.

T
tianshuo78520a 已提交
135
More detail of CTC loss can be found by referring to
Y
Yiqun Liu 已提交
136 137 138 139 140 141 142
[Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with
Recurrent Neural Networks](
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf).
)DOC");
  }
};

H
hong 已提交
143 144
template <typename T>
class WarpCTCGradOpMaker : public framework::SingleGradOpMaker<T> {
H
Huihuang Zheng 已提交
145
 public:
H
hong 已提交
146
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
H
Huihuang Zheng 已提交
147 148

 protected:
149
  void Apply(GradOpPtr<T> op) const override {
H
Huihuang Zheng 已提交
150 151
    op->SetType("warpctc_grad");

H
hong 已提交
152 153 154
    op->SetInput("WarpCTCGrad", this->Output("WarpCTCGrad"));
    op->SetInput("Logits", this->Input("Logits"));
    op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
H
Huihuang Zheng 已提交
155

H
hong 已提交
156
    op->SetInput("LogitsLength", this->Input("LogitsLength"));
157

H
hong 已提交
158
    op->SetOutput(framework::GradVarName("Logits"), this->InputGrad("Logits"));
H
Huihuang Zheng 已提交
159

H
hong 已提交
160
    op->SetAttrMap(this->Attrs());
H
Huihuang Zheng 已提交
161 162 163
  }
};

Y
Yiqun Liu 已提交
164 165 166 167 168
class WarpCTCGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
169 170 171
    OP_INOUT_CHECK(ctx->HasInput("WarpCTCGrad"), "Input", "WarpCTCGrad",
                   "WarpCTCGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Logits")), "Output",
172
                   framework::GradVarName("Logits"), "WarpCTCGrad");
Y
Yiqun Liu 已提交
173 174 175 176 177 178 179 180
    ctx->SetOutputDim(framework::GradVarName("Logits"),
                      ctx->GetInputDim("Logits"));
    ctx->ShareLoD("Logits", /*->*/ framework::GradVarName("Logits"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
181 182
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Loss")),
183
                                   ctx.GetPlace());
Y
Yiqun Liu 已提交
184 185 186
  }
};

187
DECLARE_NO_NEED_BUFFER_VARS_INFERER(WarpCTCGradOpNoNeedBufferVarInferer,
Z
Zeng Jinle 已提交
188
                                    "Logits");
189

Y
Yiqun Liu 已提交
190 191 192 193
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
194
REGISTER_OPERATOR(warpctc, ops::WarpCTCOp, ops::WarpCTCOpMaker,
H
hong 已提交
195 196
                  ops::WarpCTCGradOpMaker<paddle::framework::OpDesc>,
                  ops::WarpCTCGradOpMaker<paddle::imperative::OpBase>);
197
REGISTER_OPERATOR(warpctc_grad, ops::WarpCTCGradOp,
198
                  ops::WarpCTCGradOpNoNeedBufferVarInferer);
Y
Yiqun Liu 已提交
199
REGISTER_OP_CPU_KERNEL(
200 201
    warpctc, ops::WarpCTCKernel<paddle::platform::CPUDeviceContext, float>,
    ops::WarpCTCKernel<paddle::platform::CPUDeviceContext, double>);
Y
Yiqun Liu 已提交
202 203
REGISTER_OP_CPU_KERNEL(
    warpctc_grad,
204 205
    ops::WarpCTCGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::WarpCTCGradKernel<paddle::platform::CPUDeviceContext, double>);