fused_transformer.py 63.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18
from paddle.nn import functional as F
from paddle.incubate.nn import functional as incubate_f
from paddle.nn import Layer
from paddle.framework import ParamAttr
import paddle
19 20 21 22
from paddle.nn.layer.transformer import (
    _convert_attention_mask,
    _convert_param_attr_to_list,
)
23
from paddle.nn.initializer import Constant
24 25 26 27 28
from paddle.fluid.dygraph import no_grad
from paddle.fluid.framework import convert_np_dtype_to_dtype_, _non_static_mode
from paddle.fluid.core import VarDesc
from paddle.fluid import core
import numpy as np
29

30

31 32 33 34 35 36 37
# for distributed tensor model parallel
def _set_var_distributed(var):
    if var is None:
        return

    var.is_distributed = True

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    if not _non_static_mode():
        # NOTE: use current_block and find_var_recursive to support while_loop
        startup_block = paddle.static.default_startup_program().current_block()
        main_block = paddle.static.default_main_program().current_block()
        startup_block._find_var_recursive(var.name).is_distributed = True
        main_block._find_var_recursive(var.name).is_distributed = True


def _to_dtype(t, dtype):
    # this function is a prune of Layer._transform function to fix fused op under amp.decorator(O2)
    if not paddle.is_floating_point(t):
        return t

    if type(dtype) is not VarDesc.VarType:
        dtype = convert_np_dtype_to_dtype_(dtype)

    if t.place.is_gpu_place():
        size_dtype = core.size_of_dtype(dtype)
        waiting_alloc_memory = (
57 58
            ((np.prod(t.shape) * size_dtype) / 256 + 1) * 256 * 1.2
        )
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
        gpu_memory_available = core.gpu_memory_available()
        if gpu_memory_available < waiting_alloc_memory:
            t_used = t._copy_to(paddle.CPUPlace(), False)
            t.value().get_tensor()._clear()
        else:
            t_used = t
    else:
        t_used = t

    if dtype is not None and dtype != t_used.dtype:
        with paddle.fluid.framework._dygraph_place_guard(place=t_used.place):
            t_casted = t_used.cast(dtype=dtype)
    else:
        t_casted = t_used

    new_t = t_casted

    dst_tensor = t.value().get_tensor()
    src_tensor = new_t.value().get_tensor()
    dst_tensor._share_data_with(src_tensor)

    return t
81 82


83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
class FusedBiasDropoutResidualLayerNorm(Layer):
    """
    Applies fused_bias_dropout_residual_layer_norm operation.

    Parameters:
        embed_dim (int): The expected feature size in the input and output.
        dropout_rate (float, optional): The dropout probability used on attention
            weights to drop some attention targets for the dropout after attention.
            0 for no dropout. Default 0.5.
        bias_attr (ParamAttr|bool, optional): To specify the bias parameter property.
            Default: None, which means the default bias parameter property is used.
            If it is set to False, this layer will not have trainable bias parameter.
            See usage for details in :code:`ParamAttr`.
        epsilon (float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.

    Examples:

        .. code-block:: python

            # required: gpu
            import paddle
            # input: [batch_size, seq_len, embed_dim]
            x = paddle.rand((2, 4, 128))
            # residual: [batch_size, seq_len, embed_dim]
            residual = paddle.rand((2, 4, 128))
            fused_bias_dropout_residual_ln = paddle.incubate.nn.FusedBiasDropoutResidualLayerNorm(128)
            output = fused_bias_dropout_residual_ln(x, residual)  # [2, 4, 128]
    """

113 114 115 116 117 118 119 120 121
    def __init__(
        self,
        embed_dim,
        dropout_rate=0.5,
        weight_attr=None,
        bias_attr=None,
        epsilon=1e-5,
        name=None,
    ):
122
        super(FusedBiasDropoutResidualLayerNorm, self).__init__()
123 124 125 126
        assert embed_dim > 0, (
            "Expected embed_dim to be greater than 0, "
            "but recieved {}".format(embed_dim)
        )
127 128 129 130
        self._dtype = self._helper.get_default_dtype()
        self._bias_attr = bias_attr
        self._weight_attr = weight_attr
        self.embed_dim = embed_dim
131 132 133 134 135 136
        self.linear_bias = self.create_parameter(
            shape=[embed_dim],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True,
        )
137 138 139
        self.ln_scale = self.create_parameter(
            attr=self._weight_attr,
            shape=[embed_dim],
140 141 142 143 144
            default_initializer=Constant(value=1.0),
        )
        self.ln_bias = self.create_parameter(
            attr=self._bias_attr, shape=[embed_dim], is_bias=True
        )
145 146 147 148 149 150 151 152 153 154
        self.dropout_rate = dropout_rate
        self._epsilon = epsilon

        self.name = name

    def forward(self, x, residual):
        """
        Applies fused_bias_dropout_residual_layer_norm operation.

        Parameters:
155 156 157 158 159 160
            x (Tensor): The input tensor. It is a tensor with shape
                `[batch_size, seq_len, embed_dim]`. The data type should be
                float32 or float64.
            residual (Tensor, optional): The residual tensor. It is a tensor
                with shape `[batch_size, value_length, vdim]`. The data type
                should be float32 or float64.
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

        Returns:
            Tensor|tuple: It is a tensor that has the same shape and data type \
                as `x`.
        """

        out = incubate_f.fused_bias_dropout_residual_layer_norm(
            x=x,
            residual=residual,
            bias=self.linear_bias,
            ln_scale=self.ln_scale,
            ln_bias=self.ln_bias,
            dropout_rate=self.dropout_rate,
            ln_epsilon=self._epsilon,
            training=self.training,
            mode='upscale_in_train',
177 178
            name=self.name,
        )
179 180 181 182 183
        return out

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'embed_dim={}, seq_len={}, dropout_rate={}, epsilon={}, dtype={}{}'.format(
184 185 186 187 188 189 190
            self.embed_dim,
            self.seq_len,
            self.dropout_rate,
            self._epsilon,
            self._dtype,
            name_str,
        )
191 192


193 194
class FusedMultiHeadAttention(Layer):
    """
195
    Attention mapps queries and a set of key-value pairs to outputs, and
196 197 198 199
    Multi-Head Attention performs multiple parallel attention to jointly attending
    to information from different representation subspaces.
    Please refer to `Attention Is All You Need <https://arxiv.org/pdf/1706.03762.pdf>`_
    for more details.
200

201 202 203
    Parameters:
        embed_dim (int): The expected feature size in the input and output.
        num_heads (int): The number of heads in multi-head attention.
204
        dropout_rate (float, optional): The dropout probability used on attention
205
            weights to drop some attention targets for the dropout after attention.
206 207
            0 for no dropout. Default 0.5.
        attn_dropout_rate (float, optional): The dropout probability used on attention
208
            weights to drop some attention targets for the dropout in attention.
209
            0 for no dropout. Default 0.5.
210 211 212 213
        kdim (int, optional): The feature size in key. If None, assumed equal to
            `embed_dim`. Default None.
        vdim (int, optional): The feature size in value. If None, assumed equal to
            `embed_dim`. Default None.
214
        normalize_before (bool, optional): Indicate  whether it is pre_layer_norm
215
            (True) or post_layer_norm architecture (False). Default False.
216
        need_weights (bool, optional): Indicate whether to return the attention
217
            weights. Now, only False is supported. Default False.
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
        qkv_weight_attr(ParamAttr, optional): To specify the weight parameter property
            for QKV projection computation. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        qkv_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for QKV projection computation. The `False` value means the corresponding layer
            would not have trainable bias parameter. Default: None, which means the
            default bias parameter property is used. See usage for details in :code:`ParamAttr`.
        linear_weight_attr(ParamAttr, optional): To specify the weight parameter property
            for linear projection computation. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for linear projection computation. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        pre_ln_scale_attr(ParamAttr, optional): To specify the weight parameter property
            for pre_layer_norm computation. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        pre_ln_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for pre_layer_norm computation. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln_scale_attr(ParamAttr, optional): To specify the weight parameter property
            for post_layer_norm computation. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for post_layer_norm computation. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
L
Li Min 已提交
247 248
        epsilon (float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
249 250
        nranks (int, optional): Distributed tensor model parallel nranks. Default is 1, means not using tensor parallel.
        ring_id (int, optional): For distributed tensor model parallel. Default is -1, means not using tensor parallel.
251

252
    Examples:
253

254
        .. code-block:: python
255 256

            # required: gpu
257
            import paddle
258
            # input: [batch_size, sequence_length, embed_dim]
259 260 261
            query = paddle.rand((2, 4, 128))
            # self attention mask: [batch_size, num_heads, query_len, query_len]
            attn_mask = paddle.rand((2, 2, 4, 4))
262
            multi_head_attn = paddle.incubate.nn.FusedMultiHeadAttention(128, 2)
263 264 265
            output = multi_head_attn(query, None, None, attn_mask=attn_mask)  # [2, 4, 128]
    """

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    def __init__(
        self,
        embed_dim,
        num_heads,
        dropout_rate=0.5,
        attn_dropout_rate=0.5,
        kdim=None,
        vdim=None,
        normalize_before=False,
        need_weights=False,
        qkv_weight_attr=None,
        qkv_bias_attr=None,
        linear_weight_attr=None,
        linear_bias_attr=None,
        pre_ln_scale_attr=None,
        pre_ln_bias_attr=None,
        ln_scale_attr=None,
        ln_bias_attr=None,
        epsilon=1e-5,
        nranks=1,
        ring_id=-1,
        name=None,
    ):
289
        super(FusedMultiHeadAttention, self).__init__()
290

291 292 293 294 295 296 297 298 299
        assert embed_dim > 0, (
            "Expected embed_dim to be greater than 0, "
            "but received {}".format(embed_dim)
        )
        assert (
            num_heads > 0
        ), "Expected nhead to be greater than 0, " "but received {}".format(
            num_heads
        )
300 301 302

        self.normalize_before = normalize_before
        self._dtype = self._helper.get_default_dtype()
303
        self._epsilon = epsilon
304
        self._ring_id = ring_id
305

306 307
        self.embed_dim = embed_dim
        self.num_heads = num_heads
308
        self.head_dim = embed_dim // num_heads
309 310 311
        self.kdim = kdim
        self.vdim = vdim
        self.need_weights = need_weights
312 313 314
        assert (
            self.head_dim * num_heads == embed_dim
        ), "embed_dim must be divisible by num_heads"
315 316 317 318 319
        assert need_weights is False, "Only support need_weight is False now."

        # tensor model parallel
        assert num_heads % nranks == 0
        num_heads = num_heads // nranks
320 321 322

        self.qkv_weight = self.create_parameter(
            shape=[3, num_heads, self.head_dim, embed_dim],
323
            attr=qkv_weight_attr,
324
            dtype=self._dtype,
325 326
            is_bias=False,
        )
327 328
        self.qkv_bias = self.create_parameter(
            shape=[3, num_heads, self.head_dim],
329
            attr=qkv_bias_attr,
330
            dtype=self._dtype,
331 332
            is_bias=True,
        )
333 334 335 336
        self.linear_weight = self.create_parameter(
            shape=[num_heads * self.head_dim, embed_dim],
            attr=linear_weight_attr,
            dtype=self._dtype,
337 338 339 340 341 342 343 344
            is_bias=False,
        )
        self.linear_bias = self.create_parameter(
            shape=[embed_dim],
            attr=linear_bias_attr,
            dtype=self._dtype,
            is_bias=True,
        )
345

346 347 348 349 350 351 352 353 354 355 356 357 358
        # tensor model parallel
        if nranks > 1:
            assert ring_id != -1
            # column parallel
            _set_var_distributed(self.qkv_weight)
            _set_var_distributed(self.qkv_bias)
            # row parallel
            _set_var_distributed(self.linear_weight)

        if normalize_before:
            self.pre_ln_scale = self.create_parameter(
                attr=pre_ln_scale_attr,
                shape=[embed_dim],
359 360 361 362 363
                default_initializer=Constant(value=1.0),
            )
            self.pre_ln_bias = self.create_parameter(
                attr=pre_ln_bias_attr, shape=[embed_dim], is_bias=True
            )
364 365 366 367 368 369 370 371
            self.ln_scale = None
            self.ln_bias = None
        else:
            self.pre_ln_scale = None
            self.pre_ln_bias = None
            self.ln_scale = self.create_parameter(
                attr=ln_scale_attr,
                shape=[embed_dim],
372 373 374 375 376
                default_initializer=Constant(value=1.0),
            )
            self.ln_bias = self.create_parameter(
                attr=ln_bias_attr, shape=[embed_dim], is_bias=True
            )
377 378 379 380 381

        self.dropout_rate = dropout_rate
        self.attn_dropout_rate = attn_dropout_rate

        self.name = name
382 383 384 385 386

    def forward(self, query, key=None, value=None, attn_mask=None, cache=None):
        """
        Applies multi-head attention to map queries and a set of key-value pairs
        to outputs.
387

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
        Parameters:
            query (Tensor): The queries for multi-head attention. It is a
                tensor with shape `[batch_size, query_length, embed_dim]`. The
                data type should be float32 or float64.
            key (Tensor, optional): The keys for multi-head attention. It is
                a tensor with shape `[batch_size, key_length, kdim]`. The
                data type should be float32 or float64. If None, use `query` as
                `key`. Default None.
            value (Tensor, optional): The values for multi-head attention. It
                is a tensor with shape `[batch_size, value_length, vdim]`.
                The data type should be float32 or float64. If None, use `query` as
                `value`. Default None.
            attn_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`.
404 405 406 407 408
                When the data type is bool, the unwanted positions have `False`
                values and the others have `True` values. When the data type is
                int, the unwanted positions have 0 values and the others have 1
                values. When the data type is float, the unwanted positions have
                `-INF` values and the others have 0 values. It can be None when
409 410
                nothing wanted or needed to be prevented attention to. Default None.
            cache (MultiHeadAttention.Cache|MultiHeadAttention.StaticCache, optional):
411
                Now, only None is supported. Default None.
412

413 414
        Returns:
            Tensor|tuple: It is a tensor that has the same shape and data type \
415
                as `query`, representing attention output.
416
        """
417 418 419 420 421 422 423 424 425 426 427 428 429
        if attn_mask is not None:
            # Support bool or int mask
            attn_mask = _convert_attention_mask(attn_mask, query.dtype)

        out = incubate_f.fused_multi_head_attention(
            x=query,
            qkv_weight=self.qkv_weight,
            linear_weight=self.linear_weight,
            pre_layer_norm=self.normalize_before,
            pre_ln_scale=self.pre_ln_scale,
            pre_ln_bias=self.pre_ln_bias,
            ln_scale=self.ln_scale,
            ln_bias=self.ln_bias,
430
            pre_ln_epsilon=self._epsilon,
431 432
            qkv_bias=self.qkv_bias,
            linear_bias=self.linear_bias,
433
            cache_kv=cache,
434 435 436
            attn_mask=attn_mask,
            dropout_rate=self.dropout_rate,
            attn_dropout_rate=self.attn_dropout_rate,
437 438
            ln_epsilon=self._epsilon,
            training=self.training,
439
            ring_id=self._ring_id,
440 441
            name=self.name,
        )
442
        return out
443

444 445 446
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'embed_dim={}, num_heads={}, dropout_rate={}, attn_dropout_rate={}, epsilon={}, kdim={}, vdim={}, normalize_before={}, need_weights={}, dtype={}{}'.format(
447 448 449 450 451 452 453 454 455 456 457 458
            self.embed_dim,
            self.num_heads,
            self.dropout_rate,
            self.attn_dropout_rate,
            self._epsilon,
            self.kdim,
            self.vdim,
            self.normalize_before,
            self.need_weights,
            self._dtype,
            name_str,
        )
459

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    def _amp_decorate(self, dtype):
        # tmp fix for amp.decorator(O2)
        layer_norm_params_id = []
        if self.normalize_before:
            layer_norm_params_id.append(id(self.pre_ln_scale))
            layer_norm_params_id.append(id(self.pre_ln_bias))
        else:
            layer_norm_params_id.append(id(self.ln_scale))
            layer_norm_params_id.append(id(self.ln_bias))

        for key, param in self._parameters.items():
            if id(param) in layer_norm_params_id:
                continue
            if param is not None:
                with no_grad():
                    param_applied = _to_dtype(param, dtype)

        self._dtype = dtype

479 480

class FusedFeedForward(Layer):
481 482 483 484 485 486
    """
    Parameters:
        d_model (int): The expected feature size in the input and output.
        dim_feedforward (int): The hidden layer size.
        dropout_rate (float, optional): The dropout probability used in pre-process
            and post-precess. Default 0.1
487 488
        epsilon (float, optional): he small value added to the variance to prevent
            division by zero. Default: 1e-05.
489 490 491 492 493
        activation (str, optional): The activation function. Default relu.
        act_dropout_rate (float, optional): The dropout probability after activition.
            If None, use the value of `dropout_rate`. Default None
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into, preprocessing or postprocessing. Default False
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
        linear1_weight_attr(ParamAttr, optional): To specify the weight parameter property
            for FFN first linear. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear1_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for FFN first linear. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear2_weight_attr(ParamAttr, optional): To specify the weight parameter property
            for FFN second linear. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear2_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for FFN second linear. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln1_scale_attr(ParamAttr, optional): To specify the weight parameter property
            for FFN pre_layer_norm. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln1_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for FFN pre_layer_norm. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln2_scale_attr(ParamAttr, optional): To specify the weight parameter property
            for FFN post_layer_norm. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln2_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for FFN layer_norm. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        nranks (int, optional): Distributed tensor model parallel nranks. Default is 1, means not using tensor parallel.
        ring_id (int, optional): For distributed tensor model parallel. Default is -1, means not using tensor parallel.
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle
            from paddle.incubate.nn import FusedFeedForward

            fused_feedforward_layer = FusedFeedForward(8, 8)
            x = paddle.rand((1, 8, 8))
            out = fused_feedforward_layer(x)
            print(out.numpy().shape)
            # (1, 8, 8)
    """

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
    def __init__(
        self,
        d_model,
        dim_feedforward,
        dropout_rate=0.1,
        epsilon=1e-05,
        activation="relu",
        act_dropout_rate=None,
        normalize_before=False,
        linear1_weight_attr=None,
        linear1_bias_attr=None,
        linear2_weight_attr=None,
        linear2_bias_attr=None,
        ln1_scale_attr=None,
        ln1_bias_attr=None,
        ln2_scale_attr=None,
        ln2_bias_attr=None,
        nranks=1,
        ring_id=-1,
        name=None,
    ):
562 563

        super(FusedFeedForward, self).__init__()
564 565 566 567 568 569 570 571 572 573
        assert (
            d_model > 0
        ), "Expected d_model to be greater than 0, but received {}".format(
            d_model
        )
        assert (
            dim_feedforward > 0
        ), "Expected dim_feedforward to be greater than 0, but received {}".format(
            dim_feedforward
        )
574 575 576

        self._dtype = self._helper.get_default_dtype()
        self._d_model = d_model
577 578 579

        assert dim_feedforward % nranks == 0
        dim_feedforward = dim_feedforward // nranks
580 581
        self._dim_feedforward = dim_feedforward
        self._dropout_rate = dropout_rate
582 583 584
        self._act_dropout_rate = (
            dropout_rate if act_dropout_rate is None else act_dropout_rate
        )
585 586
        self._act_method = activation
        self._normalize_before = normalize_before
587
        self._epsilon = epsilon
588
        self._ring_id = ring_id
589 590 591

        self._linear1_weight = self.create_parameter(
            shape=[d_model, dim_feedforward],
592
            attr=linear1_weight_attr,
593
            dtype=self._dtype,
594 595 596 597 598 599 600 601
            is_bias=False,
        )
        self._linear1_bias = self.create_parameter(
            shape=[dim_feedforward],
            attr=linear1_bias_attr,
            dtype=self._dtype,
            is_bias=True,
        )
602 603 604

        self._linear2_weight = self.create_parameter(
            shape=[dim_feedforward, d_model],
605
            attr=linear2_weight_attr,
606
            dtype=self._dtype,
607 608
            is_bias=False,
        )
609

610 611 612 613 614 615
        self._linear2_bias = self.create_parameter(
            shape=[d_model],
            attr=linear2_bias_attr,
            dtype=self._dtype,
            is_bias=True,
        )
616

617 618 619 620 621 622 623 624 625 626 627 628
        if nranks > 1:
            assert ring_id != -1
            # column parallel
            _set_var_distributed(self._linear1_weight)
            _set_var_distributed(self._linear1_bias)
            _set_var_distributed(self._linear2_weight)

        if normalize_before:
            self._ln1_scale = self.create_parameter(
                shape=[d_model],
                attr=ln1_scale_attr,
                is_bias=False,
629 630 631 632 633
                default_initializer=Constant(1.0),
            )
            self._ln1_bias = self.create_parameter(
                shape=[d_model], attr=ln1_bias_attr, is_bias=True
            )
634 635 636 637 638 639 640 641 642
            self._ln2_scale = None
            self._ln2_bias = None
        else:
            self._ln1_scale = None
            self._ln1_bias = None
            self._ln2_scale = self.create_parameter(
                shape=[d_model],
                attr=ln2_scale_attr,
                is_bias=False,
643 644 645 646 647
                default_initializer=Constant(1.0),
            )
            self._ln2_bias = self.create_parameter(
                shape=[d_model], attr=ln2_bias_attr, is_bias=True
            )
648

649
        self.name = name
650 651

    def forward(self, src, cache=None):
652
        out = incubate_f.fused_feedforward(
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
            src,
            self._linear1_weight,
            self._linear2_weight,
            self._linear1_bias,
            self._linear2_bias,
            self._ln1_scale,
            self._ln1_bias,
            self._ln2_scale,
            self._ln2_bias,
            dropout1_rate=self._act_dropout_rate,
            dropout2_rate=self._dropout_rate,
            activation=self._act_method,
            ln1_epsilon=self._epsilon,
            ln2_epsilon=self._epsilon,
            pre_layer_norm=self._normalize_before,
            training=self.training,
669
            ring_id=self._ring_id,
670 671
            name=self.name,
        )
672
        return out
673

674 675 676
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'd_model={}, dim_feedforward={}, dropout_rate={}, epsilon={}, activation={}, act_dropout_rate={}, normalize_before={}, dtype={}{}'.format(
677 678 679 680 681 682 683 684 685 686
            self._d_model,
            self._dim_feedforward,
            self._dropout_rate,
            self._epsilon,
            self._act_method,
            self._act_dropout_rate,
            self._normalize_before,
            self._dtype,
            name_str,
        )
687

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
    def _amp_decorate(self, dtype):
        # tmp fix for amp.decorator(O2)
        layer_norm_params_id = []
        if self._normalize_before:
            layer_norm_params_id.append(id(self._ln1_scale))
            layer_norm_params_id.append(id(self._ln1_bias))
        else:
            layer_norm_params_id.append(id(self._ln2_scale))
            layer_norm_params_id.append(id(self._ln2_bias))

        for key, param in self._parameters.items():
            if id(param) in layer_norm_params_id:
                continue
            if param is not None:
                with no_grad():
                    param_applied = _to_dtype(param, dtype)

        self._dtype = dtype

707 708 709

class FusedTransformerEncoderLayer(Layer):
    """
710

711
    FusedTransformerEncoderLayer is composed of two sub-layers which are self (multi-head)
712 713 714 715 716 717 718 719 720 721
    attention and feedforward network. Before and after each sub-layer, pre-process
    and post-precess would be applied on the input and output accordingly. If
    `normalize_before` is True, pre-process is layer normalization and post-precess
    includes dropout, residual connection. Otherwise, no pre-process and post-precess
    includes dropout, residual connection, layer normalization.

    Parameters:
        d_model (int): The expected feature size in the input and output.
        nhead (int): The number of heads in multi-head attention(MHA).
        dim_feedforward (int): The hidden layer size in the feedforward network(FFN).
722
        dropout_rate (float, optional): The dropout probability used in pre-process
723 724 725
            and post-precess of MHA and FFN sub-layer. Default 0.1
        activation (str, optional): The activation function in the feedforward
            network. Default relu.
726
        attn_dropout_rate (float, optional): The dropout probability used
727 728
            in MHA to drop some attention target. If None, use the value of
            `dropout`. Default None
729
        act_dropout_rate (float, optional): The dropout probability used after FFN
730 731 732 733 734 735 736 737 738 739 740
            activition.  If None, use the value of `dropout`. Default None
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
            normalization and post-precess includes dropout, residual connection.
            Otherwise, no pre-process and post-precess includes dropout, residual
            connection, layer normalization. Default False
        weight_attr(ParamAttr|list|tuple, optional): To specify the weight parameter property.
            If it is a list/tuple, `weight_attr[0]` would be used as `weight_attr` for
            MHA, and `weight_attr[1]` would be used as `weight_attr` for linear in FFN.
            Otherwise, MHA and FFN both use it as `weight_attr` to create parameters.
            Default: None, which means the default weight parameter property is used.
741
            See usage for details in :code:`ParamAttr` .
742 743 744 745 746 747 748
        bias_attr (ParamAttr|list|tuple|bool, optional): To specify the bias parameter property.
            If it is a list/tuple, `bias_attr[0]` would be used as `bias_attr` for
            MHA, and `bias_attr[1]` would be used as `bias_attr` for linear in FFN.
            Otherwise, MHA and FFN both use it as `bias_attr` to create parameters.
            The `False` value means the corresponding layer would not have trainable
            bias parameter. See usage for details in :code:`ParamAttr` . Default: None,
            which means the default bias parameter property is used.
749

750 751 752

    Examples:
        .. code-block:: python
753

754
            # required: gpu
755
            import paddle
756
            from paddle.incubate.nn import FusedTransformerEncoderLayer
757 758 759 760 761

            # encoder input: [batch_size, src_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # self attention mask: [batch_size, n_head, src_len, src_len]
            attn_mask = paddle.rand((2, 2, 4, 4))
762
            encoder_layer = FusedTransformerEncoderLayer(128, 2, 512)
763
            enc_output = encoder_layer(enc_input, attn_mask)  # [2, 4, 128]
764

765 766
    """

767 768 769 770 771 772 773 774 775 776 777 778 779
    def __init__(
        self,
        d_model,
        nhead,
        dim_feedforward,
        dropout_rate=0.1,
        activation="relu",
        attn_dropout_rate=None,
        act_dropout_rate=None,
        normalize_before=False,
        weight_attr=None,
        bias_attr=None,
    ):
780 781 782 783 784
        self._config = locals()
        self._config.pop("self")
        self._config.pop("__class__", None)  # py3

        super(FusedTransformerEncoderLayer, self).__init__()
785 786 787 788 789 790 791 792 793 794
        assert (
            d_model > 0
        ), "Expected d_model to be greater than 0, " "but received {}".format(
            d_model
        )
        assert (
            nhead > 0
        ), "Expected nhead to be greater than 0, " "but received {}".format(
            nhead
        )
795 796
        assert dim_feedforward > 0, (
            "Expected dim_feedforward to be greater than 0, "
797 798 799 800 801 802 803 804
            "but received {}".format(dim_feedforward)
        )
        attn_dropout_rate = (
            dropout_rate if attn_dropout_rate is None else attn_dropout_rate
        )
        act_dropout_rate = (
            dropout_rate if act_dropout_rate is None else act_dropout_rate
        )
805 806 807 808 809 810 811 812
        self.normalize_before = normalize_before

        weight_attrs = _convert_param_attr_to_list(weight_attr, 2)
        bias_attrs = _convert_param_attr_to_list(bias_attr, 2)

        self.fused_attn = FusedMultiHeadAttention(
            d_model,
            nhead,
813 814 815
            dropout_rate=dropout_rate,
            attn_dropout_rate=attn_dropout_rate,
            normalize_before=self.normalize_before,
816 817 818 819 820 821 822
            qkv_weight_attr=weight_attrs[0],
            qkv_bias_attr=bias_attrs[0],
            linear_weight_attr=weight_attrs[0],
            linear_bias_attr=bias_attrs[0],
            pre_ln_scale_attr=weight_attrs[0],
            pre_ln_bias_attr=bias_attrs[0],
            ln_scale_attr=weight_attrs[0],
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
            ln_bias_attr=bias_attrs[0],
        )

        self.ffn = FusedFeedForward(
            d_model,
            dim_feedforward,
            dropout_rate=dropout_rate,
            activation=activation,
            act_dropout_rate=act_dropout_rate,
            normalize_before=self.normalize_before,
            linear1_weight_attr=weight_attrs[1],
            linear1_bias_attr=bias_attrs[1],
            linear2_weight_attr=weight_attrs[1],
            linear2_bias_attr=bias_attrs[1],
        )
838 839 840

    def forward(self, src, src_mask=None, cache=None):
        """
841

842
        Applies a Transformer encoder layer on the input.
843

844 845 846 847 848 849 850 851
        Parameters:
            src (Tensor): The input of Transformer encoder layer. It is
                a tensor with shape `[batch_size, sequence_length, d_model]`.
                The data type should be float32 or float64.
            src_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`.
852 853 854 855 856
                When the data type is bool, the unwanted positions have `False`
                values and the others have `True` values. When the data type is
                int, the unwanted positions have 0 values and the others have 1
                values. When the data type is float, the unwanted positions have
                `-INF` values and the others have 0 values. It can be None when
857 858
                nothing wanted or needed to be prevented attention to. Default None.
            cache (Tensor, optional): It is an instance of `MultiHeadAttention.Cache`.
859
                See :ref:`api_paddle_nn_TransformerEncoderLayer`.gen_cache for more details. It is
860 861
                only used for inference and should be None for training. Default
                None.
862

863
        Returns:
864
            Tensor|tuple, It is a tensor that has the same shape and data type \
865 866 867 868 869 870
                as `enc_input`, representing the output of Transformer encoder \
                layer. Or a tuple if `cache` is not None, except for encoder \
                layer output, the tuple includes the new cache which is same \
                as input `cache` argument but `incremental_cache` has an \
                incremental length. See `MultiHeadAttention.gen_cache` and \
                `MultiHeadAttention.forward` for more details.
871

872
        """
873 874 875 876
        src_mask = _convert_attention_mask(src_mask, src.dtype)
        if cache is None:
            attn_out = self.fused_attn(src, attn_mask=src_mask)
        else:
877 878 879
            attn_out, incremental_cache = self.fused_attn(
                src, attn_mask=src_mask, cache=cache
            )
880 881 882 883

        ffn_out = self.ffn(attn_out)

        return ffn_out if cache is None else (ffn_out, incremental_cache)
884 885 886 887 888 889 890 891 892 893


class FusedTransformer(Layer):
    """
    A Transformer model composed of an instance of `TransformerEncoder` and an
    instance of `TransformerDecoder`. While the embedding layer and output layer
    are not included.

    Please refer to `Attention is all you need <http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf>`_ ,
    and see `TransformerEncoder` and `TransformerDecoder` for more details.
894

895 896 897 898
    Users can configurate the model architecture with corresponding parameters.
    Note the usage of `normalize_before` representing where to apply layer
    normalization (in pre-process or post-precess of multi-head attention or FFN),
    and some transformer like models are different on this, such as
899
    `BERT <https://arxiv.org/abs/1810.04805>`_ and `GPT2 <https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf>`_ .
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
    The default architecture here places layer normalization in post-process and
    applies another layer normalization on the output of last encoder/decoder layer.

    Parameters:
        d_model (int, optional): The expected feature size in the encoder/decoder input
            and output. Default 512
        nhead (int, optional): The number of heads in multi-head attention(MHA). Default 8
        num_encoder_layers (int, optional): The number of layers in encoder. Default 6
        num_decoder_layers (int, optional): The number of layers in decoder. Default 6
        dim_feedforward (int, optional): The hidden layer size in the feedforward network(FFN). Default 2048
        dropout (float, optional): The dropout probability used in pre-process
            and post-precess of MHA and FFN sub-layer. Default 0.1
        activation (str, optional): The activation function in the feedforward
            network. Default relu.
        attn_dropout (float, optional): The dropout probability used
            in MHA to drop some attention target. If None, use the value of
            `dropout`. Default None
        act_dropout (float, optional): The dropout probability used after FFN
            activition.  If None, use the value of `dropout`. Default None
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
            normalization and post-precess includes dropout, residual connection.
            Otherwise, no pre-process and post-precess includes dropout, residual
            connection, layer normalization. Default False
        weight_attr(ParamAttr|list|tuple, optional): To specify the weight parameter property.
925 926 927 928 929 930 931 932 933 934
            If it is a list/tuple, the length of `weight_attr` could be 1, 2 or 3. If it is 3,
            `weight_attr[0]` would be used as `weight_attr` for self attention, `weight_attr[1]`
            would be used as `weight_attr` for cross attention of `TransformerDecoder`,
            and `weight_attr[2]` would be used as `weight_attr` for linear in FFN.
            If it is 2, `weight_attr[0]` would be used as `weight_attr` both for self attention
            and cross attntion and `weight_attr[1]` would be used as `weight_attr` for
            linear in FFN. If it is 1, `weight_attr[0]` would be used as `weight_attr`
            for self attention, cross attention and linear in FFN. Otherwise,
            the three sub-layers all uses it as `weight_attr` to create parameters.
            Default: None, which means the default weight parameter property is used.
935
            See usage for details
936
            in :code:`ParamAttr` .
937
        bias_attr (ParamAttr|list|tuple|bool, optional): To specify the bias parameter property.
938 939 940 941 942 943 944 945 946 947 948
            If it is a list/tuple, the length of `bias_attr` could be 1, 2 or 3. If it is 3,
            `bias_attr[0]` would be used as `bias_attr` for self attention, `bias_attr[1]`
            would be used as `bias_attr` for cross attention of `TransformerDecoder`,
            and `bias_attr[2]` would be used as `bias_attr` for linear in FFN.
            If it is 2, `bias_attr[0]` would be used as `bias_attr` both for self attention
            and cross attntion and `bias_attr[1]` would be used as `bias_attr` for
            linear in FFN. If it is 1, `bias_attr[0]` would be used as `bias_attr`
            for self attention, cross attention and linear in FFN. Otherwise,
            the three sub-layers all uses it as `bias_attr` to create parameters.
            The `False` value means the corresponding layer would not have trainable
            bias parameter. See usage for details in :code:`ParamAttr` .
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
            Default: None,which means the default bias parameter property is used.
        custom_encoder (Layer, optional): If custom encoder is provided, use it as the encoder.
            Default None
        custom_decoder (Layer, optional): If custom decoder is provided, use it as the decoder.
            Default None

    Examples:

        .. code-block:: python

            import paddle
            from paddle.nn import Transformer

            # src: [batch_size, tgt_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # tgt: [batch_size, src_len, d_model]
            dec_input = paddle.rand((2, 6, 128))
            # src_mask: [batch_size, n_head, src_len, src_len]
            enc_self_attn_mask = paddle.rand((2, 2, 4, 4))
            # tgt_mask: [batch_size, n_head, tgt_len, tgt_len]
            dec_self_attn_mask = paddle.rand((2, 2, 6, 6))
            # memory_mask: [batch_size, n_head, tgt_len, src_len]
            cross_attn_mask = paddle.rand((2, 2, 6, 4))
            transformer = Transformer(128, 2, 4, 4, 512)
            output = transformer(enc_input,
                                 dec_input,
                                 enc_self_attn_mask,
                                 dec_self_attn_mask,
                                 cross_attn_mask)  # [2, 6, 128]
    """

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
    def __init__(
        self,
        d_model=512,
        nhead=8,
        num_encoder_layers=6,
        num_decoder_layers=6,
        dim_feedforward=2048,
        dropout=0.1,
        activation="relu",
        attn_dropout=None,
        act_dropout=None,
        normalize_before=False,
        weight_attr=None,
        bias_attr=None,
        custom_encoder=None,
        custom_decoder=None,
    ):
997
        super(fusedTransformer, self).__init__()
998
        raise NotImplementedError()
999 1000

    def forward(self, src, tgt, src_mask=None, tgt_mask=None, memory_mask=None):
1001
        raise NotImplementedError()
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140


class FusedMultiTransformer(Layer):
    """
    FusedMultiTransformer is composed of multi transformer layers which contains two
    sub-layers which are self (multi-head) attention and feedforward network. The
    function of one transformer layer is consistent with the following pseudo code:

    .. code-block:: python

        if pre_layer_norm:
            out = layer_norm(x)
            out = qkv_linear(out) + qkv_bias
        else:
            out = qkv_linear(x) + qkv_bias
        out = transpose(out, perm=[2, 0, 3, 1, 4])
        # extract q, k and v from out.
        q = out[0:1, ::]
        k = out[1:2, ::]
        v = out[2:3, ::]
        out = q * k^t
        out = attn_mask + out
        out = softmax(out)
        out = dropout(out)
        out = out * v
        out = transpose(out, perm=[0, 2, 1, 3])
        out = linear(out)
        if pre_layer_norm:
            out = x + dropout(out + bias)
        else:
            out = layer_norm(x + dropout(out + bias))

        residual = out;
        if pre_layer_norm:
            out = ffn_layer_norm(out)
        out = ffn1_linear(out)
        out = dropout(activation(out + ffn1_bias))
        out = ffn2_linear(out)
        out = residual + dropout(out + ffn2_bias)
        if not pre_layer_norm:
            out = ffn_layer_norm(out)

    Parameters:
        embed_dim (int): The expected feature size in the input and output.
        num_heads (int): The number of heads in multi-head attention(MHA).
        dim_feedforward (int): The hidden layer size in the feedforward network(FFN).
        dropout_rate (float, optional): The dropout probability used in pre-process
            and post-precess of MHA and FFN sub-layer. Default 0.0
        activation (str, optional): The activation function in the feedforward
            network. Default "gelu".
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
            normalization and post-precess includes dropout, residual connection.
            Otherwise, no pre-process and post-precess includes dropout, residual
            connection, layer normalization. Default True
        ln_scale_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for Attention layer_norm. For Attention layer_norm weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for Attention layer_norm. For Attention layer_norm bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        qkv_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for Attention qkv computation. For Attention qkv weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        qkv_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for Attention qkv computation. For Attention qkv bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for Attention linear. For Attention linear weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for Attention linear computation. For Attention linear bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn_ln_scale_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for FFN layer_norm. For FFN layer_norm weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn_ln_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for FFN layer_norm. For FFN layer_norm bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn1_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for FFN first linear. For FFN first linear weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn1_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for FFN first linear. For FFN first linear bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn2_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for FFN second linear. For FFN second linear weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn2_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for FFN second linear. For FFN second linear bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        epsilon (float, optional): Small float value added to denominator of the layer_norm to
            avoid dividing by zero. Default: 1e-05.
        num_layers (int, optional): The number of layers of the transformer. If `qkv_weight_attrs`
            is a list or tuple, the number of layers is obtained from `qkv_weight_attrs`. num_layers
            only takes effect when `qkv_weight_attrs` is not a list or tuple. Default: -1.
        nranks (int, optional): Distributed tensor model parallel nranks. Default is 1, means not using mp.
1141 1142 1143
        trans_qkvw (bool, optional): Whether to transpose for weights of qkv.
            If true, the shape eights of qkv should be [3, num_head, dim_head, dim_embed].
            Otherwise the shape of weights of qkv should be [dim_embed, 3, num_head, dim_head]. Default: True.
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
        ring_id (int, optional): For distributed tensor model parallel. Default is -1, means not using mp.
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Examples:

        .. code-block:: python

            # required: gpu
            import paddle
            from paddle.incubate.nn import FusedMultiTransformer

            # encoder input: [batch_size, src_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # self attention mask: [batch_size, 1, src_len, src_len]
            attn_mask = paddle.rand((2, 1, 4, 4))
            encoder_layers = FusedMultiTransformer(128, 2, 512, num_layers=1)
            enc_output = encoder_layers(enc_input, attn_mask)  # [2, 4, 128]
    """

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
    def __init__(
        self,
        embed_dim,
        num_heads,
        dim_feedforward,
        dropout_rate=0.0,
        activation="gelu",
        normalize_before=True,
        ln_scale_attrs=None,
        ln_bias_attrs=None,
        qkv_weight_attrs=None,
        qkv_bias_attrs=None,
        linear_weight_attrs=None,
        linear_bias_attrs=None,
        ffn_ln_scale_attrs=None,
        ffn_ln_bias_attrs=None,
        ffn1_weight_attrs=None,
        ffn1_bias_attrs=None,
        ffn2_weight_attrs=None,
        ffn2_bias_attrs=None,
        epsilon=1e-5,
        num_layers=-1,
        nranks=1,
        trans_qkvw=True,
        ring_id=-1,
        name=None,
    ):
1191 1192
        super(FusedMultiTransformer, self).__init__()

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
        assert embed_dim > 0, (
            "Expected embed_dim to be greater than 0, "
            "but received {}".format(embed_dim)
        )
        assert (
            num_heads > 0
        ), "Expected nhead to be greater than 0, " "but received {}".format(
            num_heads
        )
        assert (
            dim_feedforward > 0
        ), "Expected dim_feedforward to be greater than 0, but received {}".format(
            dim_feedforward
        )
1207 1208 1209 1210

        self.normalize_before = normalize_before
        self._dtype = self._helper.get_default_dtype()
        self._epsilon = epsilon
1211
        self._trans_qkvw = trans_qkvw
1212 1213 1214 1215 1216
        self._ring_id = ring_id

        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
1217 1218 1219
        assert (
            self.head_dim * num_heads == embed_dim
        ), "embed_dim must be divisible by num_heads"
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

        # tensor model parallel
        if nranks > 1:
            assert ring_id != -1
        assert num_heads % nranks == 0
        assert dim_feedforward % nranks == 0
        num_heads = num_heads // nranks
        dim_feedforward = dim_feedforward // nranks
        self._dim_feedforward = dim_feedforward

        if isinstance(qkv_weight_attrs, (list, tuple)):
            num_layers = len(qkv_weight_attrs)
        assert num_layers > 0

        self.ln_scales, self.ln_biases = [], []
        self.qkv_weights, self.qkv_biases = [], []
        self.linear_weights, self.linear_biases = [], []
        self.ffn_ln_scales, self.ffn_ln_biases = [], []
        self.ffn1_weights, self.ffn1_biases = [], []
        self.ffn2_weights, self.ffn2_biases = [], []

        def get_attr(attrs, idx):
            if isinstance(attrs, (list, tuple)):
                assert len(attrs) == num_layers
                return attrs[idx]
            return attrs

        for i in range(num_layers):
            ln_scale_attr = get_attr(ln_scale_attrs, i)
            ln_bias_attr = get_attr(ln_bias_attrs, i)
            qkv_weight_attr = get_attr(qkv_weight_attrs, i)
            qkv_bias_attr = get_attr(qkv_bias_attrs, i)
            linear_weight_attr = get_attr(linear_weight_attrs, i)
            linear_bias_attr = get_attr(linear_bias_attrs, i)

            ffn_ln_scale_attr = get_attr(ffn_ln_scale_attrs, i)
            ffn_ln_bias_attr = get_attr(ffn_ln_bias_attrs, i)
            ffn1_weight_attr = get_attr(ffn1_weight_attrs, i)
            ffn1_bias_attr = get_attr(ffn1_bias_attrs, i)
            ffn2_weight_attr = get_attr(ffn2_weight_attrs, i)
            ffn2_bias_attr = get_attr(ffn2_bias_attrs, i)

            ln_scale = self.create_parameter(
                attr=ln_scale_attr,
                shape=[embed_dim],
1265 1266 1267 1268 1269
                default_initializer=Constant(value=1.0),
            )
            ln_bias = self.create_parameter(
                attr=ln_bias_attr, shape=[embed_dim], is_bias=True
            )
1270
            qkv_weight = self.create_parameter(
1271
                shape=[3, num_heads, self.head_dim, embed_dim]
1272 1273
                if trans_qkvw
                else [embed_dim, 3, num_heads, self.head_dim],
1274 1275
                attr=qkv_weight_attr,
                dtype=self._dtype,
1276 1277
                is_bias=False,
            )
1278 1279 1280 1281
            qkv_bias = self.create_parameter(
                shape=[3, num_heads, self.head_dim],
                attr=qkv_bias_attr,
                dtype=self._dtype,
1282 1283
                is_bias=True,
            )
1284 1285 1286 1287
            linear_weight = self.create_parameter(
                shape=[num_heads * self.head_dim, embed_dim],
                attr=linear_weight_attr,
                dtype=self._dtype,
1288 1289 1290 1291 1292 1293 1294 1295
                is_bias=False,
            )
            linear_bias = self.create_parameter(
                shape=[embed_dim],
                attr=linear_bias_attr,
                dtype=self._dtype,
                is_bias=True,
            )
1296 1297 1298 1299 1300

            ffn_ln_scale = self.create_parameter(
                shape=[embed_dim],
                attr=ffn_ln_scale_attr,
                is_bias=False,
1301 1302 1303 1304 1305
                default_initializer=Constant(1.0),
            )
            ffn_ln_bias = self.create_parameter(
                shape=[embed_dim], attr=ffn_ln_bias_attr, is_bias=True
            )
1306 1307 1308 1309
            ffn1_weight = self.create_parameter(
                shape=[embed_dim, dim_feedforward],
                attr=ffn1_weight_attr,
                dtype=self._dtype,
1310 1311 1312 1313 1314 1315 1316 1317
                is_bias=False,
            )
            ffn1_bias = self.create_parameter(
                shape=[dim_feedforward],
                attr=ffn1_bias_attr,
                dtype=self._dtype,
                is_bias=True,
            )
1318 1319 1320 1321
            ffn2_weight = self.create_parameter(
                shape=[dim_feedforward, embed_dim],
                attr=ffn2_weight_attr,
                dtype=self._dtype,
1322 1323 1324 1325 1326 1327 1328 1329
                is_bias=False,
            )
            ffn2_bias = self.create_parameter(
                shape=[embed_dim],
                attr=ffn2_bias_attr,
                dtype=self._dtype,
                is_bias=True,
            )
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

            # tensor model parallel
            if nranks > 1:
                # column parallel
                _set_var_distributed(qkv_weight)
                _set_var_distributed(qkv_bias)
                _set_var_distributed(ffn1_weight)
                _set_var_distributed(ffn1_bias)
                # row parallel
                _set_var_distributed(linear_weight)
                _set_var_distributed(ffn2_weight)

            self.ln_scales.append(ln_scale)
            self.ln_biases.append(ln_bias)
            self.qkv_weights.append(qkv_weight)
            self.qkv_biases.append(qkv_bias)
            self.linear_weights.append(linear_weight)
            self.linear_biases.append(linear_bias)

            self.ffn_ln_scales.append(ffn_ln_scale)
            self.ffn_ln_biases.append(ffn_ln_bias)
            self.ffn1_weights.append(ffn1_weight)
            self.ffn1_biases.append(ffn1_bias)
            self.ffn2_weights.append(ffn2_weight)
            self.ffn2_biases.append(ffn2_bias)

        self.dropout_rate = dropout_rate
        self.activation = activation
        self.name = name

    def forward(self, src, attn_mask=None, caches=None, time_step=None):
        """
        Applies multi transformer layers on the input.

        Parameters:
            src (Tensor): The input of Transformer layers. It is
                a tensor with shape `[batch_size, sequence_length, d_model]`.
                The data type should be float16 or float32.
            attn_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                `[batch_size, 1, sequence_length, sequence_length]`. It can be
                None when nothing wanted or needed to be prevented attention to.
                Default None.
            caches (list(Tensor)|tuple(Tensor), optional): The cache structure
                tensors for the inference generation model. It is only used for
                inference and should be None for training. The shape is
                `[2, batch_size, num_head, max_seq_len, head_dim]`. Default None.
            time_step (Tensor, optional): The time step tensor for the generation
                model. Which used in decode stage, to represent the time step,
                that is, the real seq_len of CacheKV. The shape is `[1]`, must be
                in CPUPlace. Default None.

        Returns:
            Tensor|tuple: If `caches` is None, return a tensor that has
            the same shape and data type with `src`, representing the output
            of Transformer layers. If `caches` is not None, return the
            tuple (output, caches), which output is the output of
            Transformer layers, caches is inplace with input `caches`.
        """

        if caches is not None:
            assert len(caches) == len(self.qkv_weights)
        out = incubate_f.fused_multi_transformer(
            src,
            self.ln_scales,
            self.ln_biases,
            self.qkv_weights,
            self.qkv_biases,
            self.linear_weights,
            self.linear_biases,
            self.ffn_ln_scales,
            self.ffn_ln_biases,
            self.ffn1_weights,
            self.ffn1_biases,
            self.ffn2_weights,
            self.ffn2_biases,
            pre_layer_norm=self.normalize_before,
            epsilon=self._epsilon,
            cache_kvs=caches,
            time_step=time_step,
            attn_mask=attn_mask,
            dropout_rate=self.dropout_rate,
            activation=self.activation,
            training=self.training,
            mode='upscale_in_train',
1416
            trans_qkvw=self._trans_qkvw,
1417
            ring_id=self._ring_id,
1418 1419
            name=self.name,
        )
1420
        return out