reindex.py 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import _non_static_mode, Variable
from paddle.fluid.data_feeder import check_variable_and_dtype
from paddle.fluid import core
from paddle import _C_ops, _legacy_C_ops

__all__ = []


25 26 27
def reindex_graph(
    x, neighbors, count, value_buffer=None, index_buffer=None, name=None
):
28
    """
29

30 31 32
    Reindex Graph API.

    This API is mainly used in Graph Learning domain, which should be used
33 34
    in conjunction with `paddle.geometric.sample_neighbors` API. And the main purpose
    is to reindex the ids information of the input nodes, and return the
35 36
    corresponding graph edges after reindex.

37 38 39 40
    Take input nodes x = [0, 1, 2] as an example. If we have neighbors = [8, 9, 0, 4, 7, 6, 7], and count = [2, 3, 2],
    then we know that the neighbors of 0 is [8, 9], the neighbors of 1 is [0, 4, 7], and the neighbors of 2 is [6, 7].
    Then after graph_reindex, we will have 3 different outputs: reindex_src: [3, 4, 0, 5, 6, 7, 6], reindex_dst: [0, 0, 1, 1, 1, 2, 2]
    and out_nodes: [0, 1, 2, 8, 9, 4, 7, 6]. We can see that the numbers in `reindex_src` and `reindex_dst` is the corresponding index
41 42
    of nodes in `out_nodes`.

43 44 45
    Note:
        The number in x should be unique, otherwise it would cause potential errors. We will reindex all the nodes from 0.

46 47 48 49 50
    Args:
        x (Tensor): The input nodes which we sample neighbors for. The available
                    data type is int32, int64.
        neighbors (Tensor): The neighbors of the input nodes `x`. The data type
                            should be the same with `x`.
51
        count (Tensor): The neighbor count of the input nodes `x`. And the
52
                        data type should be int32.
53 54 55
        value_buffer (Tensor, optional): Value buffer for hashtable. The data type should be int32,
                                    and should be filled with -1. Only useful for gpu version. Default is None.
        index_buffer (Tensor, optional): Index buffer for hashtable. The data type should be int32,
56
                                    and should be filled with -1. Only useful for gpu version.
57
                                    `value_buffer` and `index_buffer` should be both not None
58
                                    if you want to speed up by using hashtable buffer. Default is None.
59 60
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.
61

62
    Returns:
63
        - reindex_src (Tensor), the source node index of graph edges after reindex.
64

65
        - reindex_dst (Tensor), the destination node index of graph edges after reindex.
66

67
        - out_nodes (Tensor), the index of unique input nodes and neighbors before reindex, where we put the input nodes `x` in the front, and put neighbor nodes in the back.
68

69 70
    Examples:
        .. code-block:: python
71

72
            import paddle
73

74 75 76 77 78 79 80 81 82 83
            x = [0, 1, 2]
            neighbors = [8, 9, 0, 4, 7, 6, 7]
            count = [2, 3, 2]
            x = paddle.to_tensor(x, dtype="int64")
            neighbors = paddle.to_tensor(neighbors, dtype="int64")
            count = paddle.to_tensor(count, dtype="int32")
            reindex_src, reindex_dst, out_nodes = paddle.geometric.reindex_graph(x, neighbors, count)
            # reindex_src: [3, 4, 0, 5, 6, 7, 6]
            # reindex_dst: [0, 0, 1, 1, 1, 2, 2]
            # out_nodes: [0, 1, 2, 8, 9, 4, 7, 6]
84 85

    """
86 87 88
    use_buffer_hashtable = (
        True if value_buffer is not None and index_buffer is not None else False
    )
89 90

    if _non_static_mode():
91 92 93 94 95 96 97 98 99
        reindex_src, reindex_dst, out_nodes = _legacy_C_ops.graph_reindex(
            x,
            neighbors,
            count,
            value_buffer,
            index_buffer,
            "flag_buffer_hashtable",
            use_buffer_hashtable,
        )
100 101 102
        return reindex_src, reindex_dst, out_nodes

    check_variable_and_dtype(x, "X", ("int32", "int64"), "graph_reindex")
103 104 105
    check_variable_and_dtype(
        neighbors, "Neighbors", ("int32", "int64"), "graph_reindex"
    )
106 107 108
    check_variable_and_dtype(count, "Count", ("int32"), "graph_reindex")

    if use_buffer_hashtable:
109 110 111 112 113 114
        check_variable_and_dtype(
            value_buffer, "HashTable_Value", ("int32"), "graph_reindex"
        )
        check_variable_and_dtype(
            index_buffer, "HashTable_Index", ("int32"), "graph_reindex"
        )
115 116 117 118 119

    helper = LayerHelper("reindex_graph", **locals())
    reindex_src = helper.create_variable_for_type_inference(dtype=x.dtype)
    reindex_dst = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_nodes = helper.create_variable_for_type_inference(dtype=x.dtype)
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    helper.append_op(
        type="graph_reindex",
        inputs={
            "X": x,
            "Neighbors": neighbors,
            "Count": count,
            "HashTable_Value": value_buffer if use_buffer_hashtable else None,
            "HashTable_Index": index_buffer if use_buffer_hashtable else None,
        },
        outputs={
            "Reindex_Src": reindex_src,
            "Reindex_Dst": reindex_dst,
            "Out_Nodes": out_nodes,
        },
        attrs={"flag_buffer_hashtable": use_buffer_hashtable},
    )
136 137 138
    return reindex_src, reindex_dst, out_nodes


139 140 141
def reindex_heter_graph(
    x, neighbors, count, value_buffer=None, index_buffer=None, name=None
):
142
    """
143

144 145 146
    Reindex HeterGraph API.

    This API is mainly used in Graph Learning domain, which should be used
147
    in conjunction with `paddle.geometric.sample_neighbors` API. And the main purpose
148 149 150
    is to reindex the ids information of the input nodes, and return the
    corresponding graph edges after reindex.

151 152 153 154 155 156 157 158
    Take input nodes x = [0, 1, 2] as an example. For graph A, suppose we have neighbors = [8, 9, 0, 4, 7, 6, 7], and count = [2, 3, 2],
    then we know that the neighbors of 0 is [8, 9], the neighbors of 1 is [0, 4, 7], and the neighbors of 2 is [6, 7]. For graph B,
    suppose we have neighbors = [0, 2, 3, 5, 1], and count = [1, 3, 1], then we know that the neighbors of 0 is [0], the neighbors of 1 is [2, 3, 5],
    and the neighbors of 3 is [1]. We will get following outputs: reindex_src: [3, 4, 0, 5, 6, 7, 6, 0, 2, 8, 9, 1], reindex_dst: [0, 0, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2]
    and out_nodes: [0, 1, 2, 8, 9, 4, 7, 6, 3, 5].

    Note:
        The number in x should be unique, otherwise it would cause potential errors. We support multi-edge-types neighbors reindexing in reindex_heter_graph api. We will reindex all the nodes from 0.
159 160 161 162

    Args:
        x (Tensor): The input nodes which we sample neighbors for. The available
                    data type is int32, int64.
163
        neighbors (list|tuple): The neighbors of the input nodes `x` from different graphs.
164
                                The data type should be the same with `x`.
165
        count (list|tuple): The neighbor counts of the input nodes `x` from different graphs.
166
                            And the data type should be int32.
167 168 169
        value_buffer (Tensor, optional): Value buffer for hashtable. The data type should be int32,
                                    and should be filled with -1. Only useful for gpu version. Default is None.
        index_buffer (Tensor, optional): Index buffer for hashtable. The data type should be int32,
170 171
                                    and should be filled with -1. Only useful for gpu version.
                                    `value_buffer` and `index_buffer` should be both not None
172
                                    if you want to speed up by using hashtable buffer. Default is None.
173 174 175 176
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
177
        - reindex_src (Tensor), the source node index of graph edges after reindex.
178

179
        - reindex_dst (Tensor), the destination node index of graph edges after reindex.
180

181 182 183
        - out_nodes (Tensor), the index of unique input nodes and neighbors before reindex,
                              where we put the input nodes `x` in the front, and put neighbor
                              nodes in the back.
184

185 186
    Examples:
        .. code-block:: python
187

188
            import paddle
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
            x = [0, 1, 2]
            neighbors_a = [8, 9, 0, 4, 7, 6, 7]
            count_a = [2, 3, 2]
            x = paddle.to_tensor(x, dtype="int64")
            neighbors_a = paddle.to_tensor(neighbors_a, dtype="int64")
            count_a = paddle.to_tensor(count_a, dtype="int32")
            neighbors_b = [0, 2, 3, 5, 1]
            count_b = [1, 3, 1]
            neighbors_b = paddle.to_tensor(neighbors_b, dtype="int64")
            count_b = paddle.to_tensor(count_b, dtype="int32")
            neighbors = [neighbors_a, neighbors_b]
            count = [count_a, count_b]
            reindex_src, reindex_dst, out_nodes = paddle.geometric.reindex_heter_graph(x, neighbors, count)
            # reindex_src: [3, 4, 0, 5, 6, 7, 6, 0, 2, 8, 9, 1]
            # reindex_dst: [0, 0, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2]
            # out_nodes: [0, 1, 2, 8, 9, 4, 7, 6, 3, 5]
206 207

    """
208 209 210
    use_buffer_hashtable = (
        True if value_buffer is not None and index_buffer is not None else False
    )
211 212 213 214

    if _non_static_mode():
        neighbors = paddle.concat(neighbors, axis=0)
        count = paddle.concat(count, axis=0)
215 216 217 218 219 220 221 222 223
        reindex_src, reindex_dst, out_nodes = _legacy_C_ops.graph_reindex(
            x,
            neighbors,
            count,
            value_buffer,
            index_buffer,
            "flag_buffer_hashtable",
            use_buffer_hashtable,
        )
224 225 226 227 228 229 230 231 232 233 234
        return reindex_src, reindex_dst, out_nodes

    if isinstance(neighbors, Variable):
        neighbors = [neighbors]
    if isinstance(count, Variable):
        count = [count]

    neighbors = paddle.concat(neighbors, axis=0)
    count = paddle.concat(count, axis=0)

    check_variable_and_dtype(x, "X", ("int32", "int64"), "heter_graph_reindex")
235 236 237
    check_variable_and_dtype(
        neighbors, "Neighbors", ("int32", "int64"), "graph_reindex"
    )
238 239 240
    check_variable_and_dtype(count, "Count", ("int32"), "graph_reindex")

    if use_buffer_hashtable:
241 242 243 244 245 246
        check_variable_and_dtype(
            value_buffer, "HashTable_Value", ("int32"), "graph_reindex"
        )
        check_variable_and_dtype(
            index_buffer, "HashTable_Index", ("int32"), "graph_reindex"
        )
247 248 249 250 251 252 253

    helper = LayerHelper("reindex_heter_graph", **locals())
    reindex_src = helper.create_variable_for_type_inference(dtype=x.dtype)
    reindex_dst = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_nodes = helper.create_variable_for_type_inference(dtype=x.dtype)
    neighbors = paddle.concat(neighbors, axis=0)
    count = paddle.concat(count, axis=0)
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    helper.append_op(
        type="graph_reindex",
        inputs={
            "X": x,
            "Neighbors": neighbors,
            "Count": count,
            "HashTable_Value": value_buffer if use_buffer_hashtable else None,
            "HashTable_Index": index_buffer if use_buffer_hashtable else None,
        },
        outputs={
            "Reindex_Src": reindex_src,
            "Reindex_Dst": reindex_dst,
            "Out_Nodes": out_nodes,
        },
        attrs={"flag_buffer_hashtable": use_buffer_hashtable},
    )
270
    return reindex_src, reindex_dst, out_nodes