layers.py 69.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
19
import six
20
import re
21 22 23
import copy
import weakref
import warnings
24
from copy import deepcopy
25 26
import inspect

27
import paddle
C
chenjian 已提交
28
import paddle.profiler as profiler
29
from paddle.profiler.utils import in_profiler_mode
30

C
chengduo 已提交
31
from . import parallel_helper
X
Xin Pan 已提交
32
from .. import unique_name
33
from paddle.fluid import core
34
from .layer_object_helper import LayerObjectHelper
35 36 37 38 39 40 41 42 43 44 45
from .layer_hooks import (
    record_program_ops_pre_hook,
    set_op_customized_attrs_post_hook,
    LayerOpsRecoder,
)
from .base import (
    program_desc_tracing_guard,
    param_guard,
    in_declarative_mode,
    _convert_into_variable,
)
46
from paddle.fluid import framework
47
from ..param_attr import ParamAttr
48
from paddle.fluid.executor import Executor, global_scope
49 50 51 52 53
from paddle.fluid.framework import (
    _non_static_mode,
    convert_np_dtype_to_dtype_,
    in_dygraph_mode,
)
54
from paddle.fluid.framework import Program, program_guard
55
from paddle.fluid.framework import _current_expected_place as _get_device
56
from paddle.fluid.core import VarDesc
C
chentianyu03 已提交
57
from paddle.fluid.dygraph import no_grad
W
wanghuancoder 已提交
58
import paddle.utils.deprecated as deprecated
59

60
__all__ = ['Layer']
61

62 63 64 65 66 67 68 69
_first_cap_re = re.compile('(.)([A-Z][a-z]+)')
_all_cap_re = re.compile('([a-z])([A-Z])')


def _convert_camel_to_snake(name):
    s1 = _first_cap_re.sub(r'\1_\2', name)
    return _all_cap_re.sub(r'\1_\2', s1).lower()

70

71 72 73 74 75 76 77 78 79 80 81
def _addindent(string, indent):
    s1 = string.split('\n')
    if len(s1) == 1:
        return string
    s2 = []
    for idx, line in enumerate(s1):
        if idx > 0:
            s2.append(str((indent * ' ') + line))
    return s1[0] + '\n' + '\n'.join(s2)


82
class HookRemoveHelper(object):
83
    """A HookRemoveHelper that can be used to remove hook."""
84 85 86 87 88 89 90 91 92 93 94 95 96 97

    next_hook_id = 0

    def __init__(self, hooks):
        self._hooks_ref = weakref.ref(hooks)
        self._hook_id = HookRemoveHelper.next_hook_id
        HookRemoveHelper.next_hook_id += 1

    def remove(self):
        hooks = self._hooks_ref()
        if hooks is not None and self._hook_id in hooks:
            del hooks[self._hook_id]


J
Jiabin Yang 已提交
98
class Layer(object):
99 100
    """
    Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
101

102
    Parameters:
103 104
        name_scope (str, optional): prefix name used by the layer to name parameters.
            If prefix is "my_layer", parameter name in MyLayer
105 106 107
            can be "my_layer_0.w_n", where "w" is the parameter
            base name and "n" is an unique suffix auto-generated.
            If None, prefix name will be snake cased class name. Default: None.
108
        dtype(str, optional): data type of this parameter.
109 110
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
111
                Default: "float32"
112

113 114
    Returns:
        None
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

    Examples:
        .. code-block:: python

            import paddle
            class MyLayer(paddle.nn.Layer):
                def __init__(self):
                    super(MyLayer, self).__init__()
                    self._linear = paddle.nn.Linear(1, 1)
                    self._dropout = paddle.nn.Dropout(p=0.5)
                def forward(self, input):
                    temp = self._linear(input)
                    temp = self._dropout(temp)
                    return temp
            x = paddle.randn([10, 1], 'float32')
            mylayer = MyLayer()
            mylayer.eval()  # set mylayer._dropout to eval mode
            out = mylayer(x)
            mylayer.train()  # set mylayer._dropout to train mode
            out = mylayer(x)
X
Xin Pan 已提交
135
    """
X
Xin Pan 已提交
136

137
    def __init__(self, name_scope=None, dtype="float32"):
138
        self.training = True
139
        if name_scope is None:
140 141
            name_scope = _convert_camel_to_snake(self.__class__.__name__)
        self._full_name = unique_name.generate(name_scope)
142
        self._helper = LayerObjectHelper(self._full_name)
X
Xin Pan 已提交
143
        self._built = False
M
minqiyang 已提交
144
        self._dtype = dtype
J
Jiabin Yang 已提交
145
        self._init_in_dynamic_mode = framework._non_static_mode()
146

X
Xin Pan 已提交
147
        self._parameters = collections.OrderedDict()
148 149 150
        # Buffers the variable (not parameter) created in layer
        self._buffers = collections.OrderedDict()
        self._non_persistable_buffer_names_set = set()
X
Xin Pan 已提交
151
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
152
        self._loaddict_holder = collections.OrderedDict()
153

154 155 156 157
        # Record generated op_descs in this layer
        self._op_recorder = LayerOpsRecoder(ops=[], hooks=[])
        self._customized_attrs = {}

158 159 160
        self._forward_pre_hooks = collections.OrderedDict()
        self._forward_post_hooks = collections.OrderedDict()

161 162 163
        self._casted_by_pure_fp16 = False

        self._state_dict_hooks = collections.OrderedDict()
164 165
        # Records orignal functions after @to_static to support to rollback
        self._original_funcs = collections.OrderedDict()
166

M
minqiyang 已提交
167
    def train(self):
168
        """
169

170 171 172 173 174
        Sets this Layer and all its sublayers to training mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
175

176
        Examples:
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                mylayer.train()  # set mylayer._dropout to train mode
                out = mylayer(x)

199
        """
200 201 202
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
J
Jiabin Yang 已提交
203
        if _non_static_mode():
204
            framework._dygraph_tracer().train_mode()
205 206 207
        # Layer-level setting
        self.training = True
        for layer in self.sublayers():
208
            layer.training = True
M
minqiyang 已提交
209 210

    def eval(self):
211 212 213 214 215 216
        """
        Sets this Layer and all its sublayers to evaluation mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                print(out)

240
        """
241 242 243
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
J
Jiabin Yang 已提交
244
        if _non_static_mode():
245
            framework._dygraph_tracer().eval_mode()
246 247 248
        # Layer-level setting
        self.training = False
        for layer in self.sublayers():
249
            layer.training = False
M
minqiyang 已提交
250

L
LielinJiang 已提交
251 252
    def apply(self, fn):
        """
253

L
LielinJiang 已提交
254 255 256 257 258 259 260
        Applies ``fn`` recursively to every sublayer (as returned by ``.sublayers()``)
        as well as self. Typical use includes initializing the parameters of a model.

        Parameters:
            fn (function): a function to be applied to each sublayer

        Returns:
261
            Layer, self
L
LielinJiang 已提交
262 263 264 265 266 267

        Example::
            .. code-block:: python

              import paddle
              import paddle.nn as nn
268

L
LielinJiang 已提交
269 270 271 272 273
              net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))

              def init_weights(layer):
                  if type(layer) == nn.Linear:
                      print('before init weight:', layer.weight.numpy())
274
                      new_weight = paddle.full(shape=layer.weight.shape, dtype=layer.weight.dtype, fill_value=0.9)
L
LielinJiang 已提交
275 276 277 278 279 280
                      layer.weight.set_value(new_weight)
                      print('after init weight:', layer.weight.numpy())

              net.apply(init_weights)

              print(net.state_dict())
281

L
LielinJiang 已提交
282
        """
283
        for layer in self.children():
L
LielinJiang 已提交
284 285 286 287 288 289
            layer.apply(fn)

        fn(self)

        return self

X
Xin Pan 已提交
290
    def full_name(self):
291 292 293
        """

        Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
294

295
        Returns:
296
            str, full name of this layer.
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

        Example::
            .. code-block:: python

                import paddle

                class LinearNet(paddle.nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__(name_scope = "demo_linear_net")
                        self._linear = paddle.nn.Linear(1, 1)

                    def forward(self, x):
                        return self._linear(x)

                linear_net = LinearNet()
                print(linear_net.full_name())   # demo_linear_net_0

X
Xin Pan 已提交
314 315 316
        """
        return self._full_name

317
    def register_forward_post_hook(self, hook):
318 319 320
        """

        Register a forward post-hook for Layer. The hook will be called after `forward` function has been computed.
321 322 323

        It should have the following form, `input` and `output` of the `hook` is `input` and `output` of the `Layer` respectively.
        User can use forward post-hook to change the output of the Layer or perform information statistics tasks on the Layer.
324

325 326 327 328 329 330
        hook(Layer, input, output) -> None or modified output

        Parameters:
            hook(function): a function registered as a forward post-hook

        Returns:
331
            HookRemoveHelper, a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .
332 333 334 335

        Examples:
            .. code-block:: python

336 337 338 339 340 341
                import paddle
                import numpy as np

                # the forward_post_hook change the output of the layer: output = output * 2
                def forward_post_hook(layer, input, output):
                    # user can use layer, input and output for information statistis tasks
342

343 344
                    # change the output
                    return output * 2
345

346
                linear = paddle.nn.Linear(13, 5)
347

348 349
                # register the hook
                forward_post_hook_handle = linear.register_forward_post_hook(forward_post_hook)
350

351 352
                value1 = np.arange(26).reshape(2, 13).astype("float32")
                in1 = paddle.to_tensor(value1)
353

354
                out0 = linear(in1)
355

356 357 358 359 360 361 362
                # remove the hook
                forward_post_hook_handle.remove()

                out1 = linear(in1)

                # hook change the linear's output to output * 2, so out0 is equal to out1 * 2.
                assert (out0.numpy() == (out1.numpy()) * 2).any()
363

364 365 366 367 368 369
        """
        hook_remove_helper = HookRemoveHelper(self._forward_post_hooks)
        self._forward_post_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def register_forward_pre_hook(self, hook):
370 371 372
        """

        Register a forward pre-hook for Layer. The hook will be called before `forward` function has been computed.
373

374
        It should have the following form, `input` of the `hook` is `input` of the `Layer`,
375
        hook can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if
376 377 378 379 380 381 382 383 384
        a single value is returned(unless that value is already a tuple).
        User can use forward pre-hook to change the input of the Layer or perform information statistics tasks on the Layer.

        hook(Layer, input) -> None or modified input

        Parameters:
            hook(function): a function registered as a forward pre-hook

        Returns:
385
            HookRemoveHelper, a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .
386 387 388 389

        Examples:
            .. code-block:: python

390 391
                import paddle
                import numpy as np
392

393
                # the forward_pre_hook change the input of the layer: input = input * 2
394 395
                def forward_pre_hook(layer, input):
                    # user can use layer and input for information statistis tasks
396

397 398 399
                    # change the input
                    input_return = (input[0] * 2)
                    return input_return
400

401
                linear = paddle.nn.Linear(13, 5)
402

403 404
                # register the hook
                forward_pre_hook_handle = linear.register_forward_pre_hook(forward_pre_hook)
405

406 407 408
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                in0 = paddle.to_tensor(value0)
                out0 = linear(in0)
409

410 411
                # remove the hook
                forward_pre_hook_handle.remove()
412

413 414 415
                value1 = value0 * 2
                in1 = paddle.to_tensor(value1)
                out1 = linear(in1)
416

417 418
                # hook change the linear's input to input * 2, so out0 is equal to out1.
                assert (out0.numpy() == out1.numpy()).any()
419 420 421 422 423
        """
        hook_remove_helper = HookRemoveHelper(self._forward_pre_hooks)
        self._forward_pre_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

424 425 426 427 428 429 430 431
    def create_parameter(
        self,
        shape,
        attr=None,
        dtype=None,
        is_bias=False,
        default_initializer=None,
    ):
432
        """Create parameters for this layer.
433

434
        Parameters:
435
            shape(list): Shape of the parameter.
436 437
            attr(ParamAttr, optional): Parameter attribute of weight. Please refer to :ref:`api_paddle_ParamAttr`. Default: None.
            dtype(str, optional): Data type of this parameter.
438
                If set str, it can be "bool",  "float16", "float32", "float64",
439 440
                "int8", "int16", "int32", "int64", "uint8" or "uint16". Default: "float32".
            is_bias(bool, optional): if this is a bias parameter. Default: False.
441
            default_initializer(Initializer, optional): the default initializer for this parameter.
442
                If set None, default initializer will be set to paddle.nn.initializer.Xavier and paddle.nn.initializer.Constant
443
                for non-bias and bias parameter, respectively. Default: None.
444

445
        Returns:
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
            :Tensor, created parameter.

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

467
        """
H
hong 已提交
468 469 470
        temp_attr = copy.deepcopy(attr)
        if isinstance(temp_attr, six.string_types) and temp_attr == "":
            temp_attr = None
471 472 473 474 475 476 477 478 479
        return self._helper.create_parameter(
            temp_attr, shape, dtype, is_bias, default_initializer
        )

    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Layer.create_tensor",
        reason="New api in create_tensor, easier to use.",
    )
480
    def create_variable(self, name=None, persistable=None, dtype=None):
W
wanghuancoder 已提交
481 482 483
        """

        Create Tensor for this layer.
484

485
        Parameters:
W
wanghuancoder 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None

            persistable(bool, optional): if set this tensor persistable. Default: False

            dtype(str, optional): data type of this parameter. If set str, it can be "bool", "float16", "float32", "float64","int8", "int16", "int32", "int64", "uint8" or "uint16". If set None, it will be "float32". Default: None

        Returns:
            Tensor, created Tensor.

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
506

W
wanghuancoder 已提交
507
                        self.back_var = self.create_variable(name = "linear_tmp_0", dtype=self._dtype)
508

W
wanghuancoder 已提交
509 510 511
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
512

W
wanghuancoder 已提交
513 514 515 516 517 518
                        return out

        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
519 520 521
            var_name = unique_name.generate(
                ".".join([self._full_name, "_generated_var"])
            )
W
wanghuancoder 已提交
522 523 524 525 526

        return self._helper.main_program.current_block().create_var(
            name=var_name,
            persistable=persistable,
            dtype=dtype,
527 528
            type=core.VarDesc.VarType.LOD_TENSOR,
        )
W
wanghuancoder 已提交
529 530 531 532 533 534 535 536 537 538

    # TODO: Add more parameter list when we need them
    def create_tensor(self, name=None, persistable=None, dtype=None):
        """

        Create Tensor for this layer.

        Parameters:
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this tensor persistable. Default: False
539
            dtype(str, optional): data type of this parameter.
540 541
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
542
                If set None, it will be "float32". Default: None
543

544
        Returns:
W
wanghuancoder 已提交
545
            Tensor, created Tensor.
546 547 548 549 550 551 552 553 554 555 556 557

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
558

W
wanghuancoder 已提交
559
                        self.back_var = self.create_tensor(name = "linear_tmp_0", dtype=self._dtype)
560

561 562 563
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
564

565 566
                        return out

567 568 569 570
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
571 572 573
            var_name = unique_name.generate(
                ".".join([self._full_name, "_generated_var"])
            )
574 575

        return self._helper.main_program.current_block().create_var(
576 577 578
            name=var_name,
            persistable=persistable,
            dtype=dtype,
579 580
            type=core.VarDesc.VarType.LOD_TENSOR,
        )
581

X
polish  
Xin Pan 已提交
582
    def parameters(self, include_sublayers=True):
583 584 585
        """

        Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
586

587
        Returns:
588
            list of Tensor, a list of Parameters.
589 590 591 592

        Examples:
            .. code-block:: python

593
                import paddle
594

595 596
                linear = paddle.nn.Linear(1,1)
                print(linear.parameters())  # print linear_0.w_0 and linear_0.b_0
597

X
Xin Pan 已提交
598
        """
599
        ret = [
600 601 602 603
            param
            for _, param in self.named_parameters(
                include_sublayers=include_sublayers
            )
604
        ]
X
polish  
Xin Pan 已提交
605
        return ret
X
Xin Pan 已提交
606

607
    def children(self):
608 609 610
        """

        Returns an iterator over immediate children layers.
611 612 613 614 615 616 617

        Yields:
            Layer: a child layer

        Examples:
            .. code-block:: python

618
                import paddle
619

620 621 622 623 624
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)

                layer_list = list(model.children())
625

626
                print(layer_list)   # [<paddle.nn.layer.common.Linear object at 0x7f7b8113f830>, <paddle.nn.layer.common.Linear object at 0x7f7b8113f950>]
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641

        """
        for _, layer in self.named_children():
            yield layer

    def named_children(self):
        """Returns an iterator over immediate children layers, yielding both
        the name of the layer as well as the layer itself.

        Yields:
            (string, Layer): Tuple containing a name and child layer

        Examples:
            .. code-block:: python

642
                import paddle
643

644 645 646 647 648 649 650
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)
                for prefix, layer in model.named_children():
                    print(prefix, layer)
                    # ('0', <paddle.nn.layer.common.Linear object at 0x7fb61ed85830>)
                    # ('1', <paddle.nn.layer.common.Linear object at 0x7fb61ed85950>)
651 652 653 654 655 656 657 658

        """
        memo = set()
        for name, layer in self._sub_layers.items():
            if layer is not None and layer not in memo:
                memo.add(layer)
                yield name, layer

J
Jiabin Yang 已提交
659
    def sublayers(self, include_self=False):
660 661 662
        """

        Returns a list of sub layers.
X
Xin Pan 已提交
663

664
        Parameters:
J
Jiabin Yang 已提交
665
            include_self(bool, optional): Whether return self as sublayers. Default: False
X
Xin Pan 已提交
666

667
        Returns:
668
            list of Layer, a list of sub layers.
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                mylayer = MyLayer()
                print(mylayer.sublayers())  # [<paddle.nn.layer.common.Linear object at 0x7f44b58977d0>, <paddle.nn.layer.common.Dropout object at 0x7f44b58978f0>]

X
Xin Pan 已提交
689
        """
690 691
        ret = [
            layer
J
Jiabin Yang 已提交
692
            for _, layer in self.named_sublayers(include_self=include_self)
693
        ]
X
Xin Pan 已提交
694 695
        return ret

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
    def named_parameters(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the parameters of sublayers.
                If True, also include the named parameters from sublayers. Default: True.

        Yields:
            (string, Parameter): Tuple of name and Parameter

        Examples:
            .. code-block:: python

711
                import paddle
712

713 714 715 716 717
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for name, param in model.named_parameters():
                    print(name, param)
718 719 720

        """
        params_set = set()
721 722 723 724 725
        named_sublayers = (
            self.named_sublayers(prefix=prefix, include_self=True)
            if include_sublayers
            else zip([prefix], [self])
        )
726 727 728 729 730 731 732 733 734
        for layer_prefix, sublayer in named_sublayers:
            params = sublayer._parameters.items()
            for key, param in params:
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, param

J
Jiabin Yang 已提交
735
    def named_sublayers(self, prefix='', include_self=False, layers_set=None):
736 737 738 739 740 741 742
        """
        Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.
        The duplicate sublayer will only be yielded once.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_self(bool, optional): Whether include the Layer itself. Default: False.
743
            layers_set(set, optional): The set to record duplicate sublayers. Default: None.
744 745 746 747 748 749 750

        Yields:
            (string, Layer): Tuple of name and Layer

        Examples:
            .. code-block:: python

751
                import paddle
752

753 754 755 756 757
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
758 759 760 761 762 763 764

        """
        if layers_set is None:
            layers_set = set()
        if include_self and self not in layers_set:
            layers_set.add(self)
            yield prefix, self
J
Jiabin Yang 已提交
765 766 767 768
        for key, layer in self._sub_layers.items():
            if layer is None:
                continue
            layer_prefix = prefix + ('.' if prefix else '') + key
769 770 771
            for p, l in layer.named_sublayers(
                prefix=layer_prefix, include_self=True, layers_set=layers_set
            ):
J
Jiabin Yang 已提交
772
                yield p, l
773

774
    def register_buffer(self, name, tensor, persistable=True):
775
        """
776
        Registers a tensor as buffer into the layer.
777

778
        `buffer` is a non-trainable tensor and will not be updated by optimizer,
779 780 781 782 783 784 785 786 787 788
        but is necessary for evaluation and inference. For example, the mean and variance in BatchNorm layers.
        The registered buffer is persistable by default, and will be saved into
        `state_dict` alongside parameters. If set persistable=False, it registers
        a non-persistable buffer, so that it will not be a part of `state_dict` .

        Buffers can be accessed as attributes using given names.

        Parameters:
            name (string): name of the buffer. The buffer can be accessed
                from this layer using the given name
789
            tensor (Tensor): the tensor to be registered as buffer.
790 791 792 793 794
            persistable (bool): whether the buffer is part of this layer's
                state_dict.

        Returns:
            None
795

796 797 798 799
        Examples:
            .. code-block:: python

                import numpy as np
800
                import paddle
801

802 803 804 805 806 807 808
                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                # get the buffer by attribute.
                print(linear.buf_name)
809 810 811 812 813

        """

        if '_buffers' not in self.__dict__:
            raise ValueError(
814 815
                "super(YourLayer, self).__init__() should be called first"
            )
816 817
        elif not isinstance(name, six.string_types):
            raise TypeError(
818 819 820 821
                "The name of buffer should be a string, but received {}.".format(
                    type(name).__name__
                )
            )
822
        elif '.' in name:
823 824 825
            raise KeyError(
                "The name of buffer can not contain `.`, "
                "because when you access the newly added buffer in the "
826 827
                "form of `self.**.**`, it will cause AttributeError."
            )
828 829 830 831
        elif name == '':
            raise KeyError("The name of buffer can not be empty.")
        elif hasattr(self, name) and name not in self._buffers:
            raise KeyError("attribute '{}' already exists.".format(name))
832 833 834
        elif tensor is not None and not (
            type(tensor) == core.VarBase or type(tensor) == core.eager.Tensor
        ):
835
            raise TypeError(
836 837 838 839
                "The registered buffer should be a Paddle.Tensor, but received {}.".format(
                    type(tensor).__name__
                )
            )
840
        else:
841
            self._buffers[name] = tensor
842 843 844 845 846 847 848
            if persistable:
                self._non_persistable_buffer_names_set.discard(name)
            else:
                self._non_persistable_buffer_names_set.add(name)

    def buffers(self, include_sublayers=True):
        """
849

850 851 852 853 854 855
        Returns a list of all buffers from current layer and its sub-layers.

        Parameters:
            include_sublayers(bool, optional): Whether include the buffers of sublayers. If True, also include the buffers from sublayers. Default: True

        Returns:
856
            list of Tensor, a list of buffers.
857 858 859 860 861 862 863 864 865 866 867 868 869 870

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle

                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                print(linear.buffers())     # == print([linear.buf_name])

871 872
        """
        ret = [
873 874 875 876
            buffer
            for _, buffer in self.named_buffers(
                include_sublayers=include_sublayers
            )
877 878 879 880 881
        ]
        return ret

    def named_buffers(self, prefix='', include_sublayers=True):
        """
882
        Returns an iterator over all buffers in the Layer, yielding tuple of name and Tensor.
883 884 885 886 887 888 889

        Parameters:
            prefix(str, optional): Prefix to prepend to all buffer names. Default: ''.
            include_sublayers(bool, optional): Whether include the buffers of sublayers.
                If True, also include the named buffers from sublayers. Default: True.

        Yields:
890
            (string, Tensor): Tuple of name and tensor
891 892 893 894 895

        Examples:
            .. code-block:: python

                import numpy as np
896
                import paddle
897

898 899 900 901
                fc1 = paddle.nn.Linear(10, 3)
                buffer1 = paddle.to_tensor(np.array([0]).astype("float32"))
                # register a tensor as buffer by specific `persistable`
                fc1.register_buffer("buf_name_1", buffer1, persistable=True)
902

903 904 905 906 907
                fc2 = paddle.nn.Linear(3, 10)
                buffer2 = paddle.to_tensor(np.array([1]).astype("float32"))
                # register a buffer by assigning an attribute with Tensor.
                # The `persistable` can only be False by this way.
                fc2.buf_name_2 = buffer2
908

909
                model = paddle.nn.Sequential(fc1, fc2)
910

911 912 913
                # get all named buffers
                for name, buffer in model.named_buffers():
                    print(name, buffer)
914 915 916

        """
        buffers_set = set()
917 918 919 920 921
        named_sublayers = (
            self.named_sublayers(prefix=prefix, include_self=True)
            if include_sublayers
            else zip([prefix], [self])
        )
922 923 924 925 926 927 928 929 930
        for layer_prefix, sublayer in named_sublayers:
            buffers = sublayer._buffers.items()
            for key, buffer in buffers:
                if buffer is None or buffer in buffers_set:
                    continue
                buffers_set.add(buffer)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, buffer

X
Xin Pan 已提交
931
    def clear_gradients(self):
932 933
        """
        Clear the gradients of all parameters for this layer.
934

935 936
        Returns:
            None
937

938 939 940
        Examples:
            .. code-block:: python

941
                import paddle
942 943
                import numpy as np

944 945 946 947 948 949 950 951 952
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
                linear = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01,
                                            parameters=linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                linear.clear_gradients()
953 954

        """
X
Xin Pan 已提交
955
        for p in self.parameters():
956 957
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
958

959
    def _build_once(self, *args, **kwargs):
960 961
        pass

962 963 964 965 966
    def _dygraph_call_func(self, *inputs, **kwargs):
        for forward_pre_hook in self._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
967
                    hook_result = (hook_result,)
968 969 970 971 972 973 974 975 976
                inputs = hook_result

        if not self._built:
            with program_desc_tracing_guard(False):
                self._build_once(*inputs, **kwargs)

                # TODO(liuyuhui) Only xpu broadcast parameters here.
                # The other device is to call _sync_params_buffers in DataParallel
                # to realize the parameter synchronization among multiply cards.
977 978 979 980
                if (
                    parallel_helper._is_data_parallel_mode()
                    and paddle.is_compiled_with_xpu()
                ):
981
                    parallel_helper._broadcast_parameters(
982 983
                        self._parameters.values()
                    )
984 985 986

            self._built = True

987
        if in_profiler_mode():
988 989 990
            with profiler.RecordEvent(
                self.__class__.__name__, profiler.TracerEventType.Forward
            ):
991 992
                outputs = self.forward(*inputs, **kwargs)
        else:
C
chenjian 已提交
993
            outputs = self.forward(*inputs, **kwargs)
994 995 996 997 998 999 1000 1001

        for forward_post_hook in self._forward_post_hooks.values():
            hook_result = forward_post_hook(self, inputs, outputs)
            if hook_result is not None:
                outputs = hook_result

        return outputs

1002
    def __call__(self, *inputs, **kwargs):
1003 1004 1005 1006 1007 1008 1009 1010
        if (
            (not in_declarative_mode())
            and (not self._forward_pre_hooks)
            and (not self._forward_post_hooks)
            and (not self._built)
            and in_dygraph_mode()
            and (not in_profiler_mode())
        ):
1011 1012 1013 1014
            self._build_once(*inputs, **kwargs)
            return self.forward(*inputs, **kwargs)
        else:
            return self._dygraph_call_func(*inputs, **kwargs)
M
minqiyang 已提交
1015

1016
    def forward(self, *inputs, **kwargs):
1017 1018 1019 1020 1021 1022 1023 1024
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
1025
        raise NotImplementedError
X
Xin Pan 已提交
1026 1027 1028 1029

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
1030
    def add_sublayer(self, name, sublayer):
1031 1032 1033
        """

        Adds a sub Layer instance.
X
Xin Pan 已提交
1034

1035
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
1036

1037 1038 1039
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
1040
        Returns:
1041
            Layer, the sublayer passed in.
1042

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
        Examples:
            .. code-block:: python

                import paddle

                class MySequential(paddle.nn.Layer):
                    def __init__(self, *layers):
                        super(MySequential, self).__init__()
                        if len(layers) > 0 and isinstance(layers[0], tuple):
                            for name, layer in layers:
                                self.add_sublayer(name, layer)
                        else:
                            for idx, layer in enumerate(layers):
                                self.add_sublayer(str(idx), layer)

                    def forward(self, input):
                        for layer in self._sub_layers.values():
                            input = layer(input)
                        return input

                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = MySequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
1068

X
Xin Pan 已提交
1069
        """
1070
        assert isinstance(sublayer, Layer) or sublayer == None
1071

X
Xin Pan 已提交
1072 1073 1074 1075 1076 1077
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

1078
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
1079

1080 1081 1082
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
1083
        Returns:
1084
            Parameter, the parameter passed in.
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

X
Xin Pan 已提交
1104
        """
1105 1106
        if '_parameters' not in self.__dict__:
            raise RuntimeError(
1107 1108
                "super(YourLayer, self).__init__() should be called firstly."
            )
1109 1110
        elif not isinstance(name, six.string_types):
            raise TypeError(
1111 1112 1113 1114
                "The name of parameter should be a string, but received {}.".format(
                    type(name).__name__
                )
            )
1115 1116 1117 1118
        elif '.' in name:
            raise KeyError(
                "The name of parameter can not contain `.`, "
                "because when you access the newly added parameter in the "
1119 1120
                "form of `self.**.**`, it will cause AttributeError."
            )
1121 1122 1123 1124
        elif name == '':
            raise KeyError("The name of parameter can not be empty.")
        elif hasattr(self, name) and name not in self._parameters:
            raise KeyError("The parameter '{}' already exists.".format(name))
1125 1126 1127
        elif parameter is not None and not isinstance(
            parameter, framework.Parameter
        ):
1128
            raise TypeError(
1129 1130 1131 1132
                "The parameter to be added should be a Parameter, but received {}.".format(
                    type(parameter).__name__
                )
            )
1133 1134 1135
        else:
            if parameter is None:
                self._parameters[name] = None
1136

1137
            if len(self._loaddict_holder) > 0:
1138 1139 1140 1141 1142
                assert (
                    parameter.name in self._loaddict_holder
                ), "Parameter not found, Can't not find [ {} ] in state_dict".format(
                    parameter.name
                )
H
hong 已提交
1143

1144
                parameter.set_value(self._loaddict_holder[parameter.name])
1145

1146
            self._parameters[name] = parameter
X
Xin Pan 已提交
1147 1148
        return parameter

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
    def _set_op_attrs(self, attrs):
        """
        Add customized attribute while append_op. In case of quantization, we want to save
        some attributes into op_desc while exporting inference model by @to_static.

        Arguments:
            attrs(dict): customized attributes that will be added into op_descs.

        NOTE: The interface is only exposed to developers.
        """

        def is_already_registered(is_pre_hook):
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
            layers_hooks = (
                self._forward_pre_hooks
                if is_pre_hook
                else self._forward_post_hooks
            )
            candidate_hook = (
                record_program_ops_pre_hook
                if is_pre_hook
                else set_op_customized_attrs_post_hook
            )
1171 1172 1173 1174

            already_registed = False
            if layers_hooks:
                last_key = next(reversed(layers_hooks))
1175
                already_registed = layers_hooks[last_key] == candidate_hook
1176 1177 1178 1179

            return already_registed

        if not isinstance(attrs, dict):
1180 1181
            raise TypeError(
                "attrs should be type(dict), but received {}".format(
1182 1183 1184
                    type(attrs).__name__
                )
            )
1185 1186 1187 1188 1189 1190

        # NOTE: Overwrite behavior for same key.
        self._customized_attrs.update(attrs)

        if not is_already_registered(is_pre_hook=True):
            pre_hook_helper = self.register_forward_pre_hook(
1191 1192
                record_program_ops_pre_hook
            )
1193 1194 1195 1196 1197 1198
            assert len(self._op_recorder.hooks) == 0
            self._op_recorder.hooks = [pre_hook_helper]

        # manually register post_hook to ensure it is inserted into the head.
        if not is_already_registered(is_pre_hook=False):
            post_hook_helper = self.register_forward_post_hook(
1199 1200
                set_op_customized_attrs_post_hook
            )
1201
            if len(self._forward_post_hooks) > 1:
1202 1203 1204
                self._forward_post_hooks.move_to_end(
                    post_hook_helper._hook_id, last=False
                )
1205 1206 1207 1208 1209 1210

            assert len(self._op_recorder.hooks) == 1

            # hooks that need to be removed once we finish executing them.
            self._op_recorder.hooks.append(post_hook_helper)

1211 1212 1213 1214 1215 1216
    def __getstate__(self):
        return self.__dict__

    def __setstate__(self, state):
        self.__dict__.update(state)

X
Xin Pan 已提交
1217
    def __getattr__(self, name):
1218 1219 1220
        if '_parameters' in self.__dict__:
            _parameters = self.__dict__['_parameters']
            if name in self._parameters:
1221
                if in_declarative_mode():
1222
                    return _convert_into_variable(self._parameters[name])
1223 1224 1225 1226 1227 1228 1229 1230
                return self._parameters[name]
        if '_sub_layers' in self.__dict__:
            _sub_layers = self.__dict__['_sub_layers']
            if name in self._sub_layers:
                return self._sub_layers[name]
        if '_buffers' in self.__dict__:
            _buffers = self.__dict__['_buffers']
            if name in _buffers:
1231
                if in_declarative_mode():
1232
                    return _convert_into_variable(_buffers[name])
1233 1234
                return _buffers[name]
        return object.__getattribute__(self, name)
X
Xin Pan 已提交
1235 1236

    def __setattr__(self, name, value):
S
songyouwei 已提交
1237 1238 1239 1240 1241
        def _remove_if_exist(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]

1242 1243
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
1244
        params = self.__dict__.get('_parameters', None)
X
Xin Pan 已提交
1245 1246 1247
        if isinstance(value, framework.Parameter):
            if params is None:
                raise ValueError(
1248 1249
                    "super(YourLayer, self).__init__() should be called first"
                )
H
hong 已提交
1250
            if len(self._loaddict_holder) > 0:
1251 1252 1253 1254 1255
                assert (
                    value.name in self._loaddict_holder
                ), "Parameter not found, Can't not find [ {} ] in state_dict".format(
                    value.name
                )
H
hong 已提交
1256 1257 1258

                value.set_value(self._loaddict_holder[value.name])

1259
            _remove_if_exist(self.__dict__, self._buffers, self._sub_layers)
1260
            params[name] = value
1261 1262 1263
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(
1264 1265 1266 1267
                    "assignment to parameter '{}' should be of type Parameter or None, but got '{}'".format(
                        name, type(value).__name__
                    )
                )
1268
            params[name] = None
X
Xin Pan 已提交
1269
        else:
1270
            layers = self.__dict__.get('_sub_layers', None)
J
Jiabin Yang 已提交
1271
            if isinstance(value, Layer):
1272 1273 1274 1275 1276
                if layers is None:
                    raise ValueError(
                        "super(YourLayer, self).__init__() should be called first"
                    )

1277
                _remove_if_exist(self.__dict__, self._parameters, self._buffers)
1278 1279 1280 1281
                layers[name] = value
            elif layers is not None and name in layers:
                if value is not None:
                    raise TypeError(
1282 1283 1284 1285
                        "assignment to sublayer '{}' should be of type Layer or None, but got '{}'".format(
                            name, type(value).__name__
                        )
                    )
1286 1287
                layers[name] = None
            else:
1288
                _buffers = self.__dict__.get('_buffers', None)
W
wanghuancoder 已提交
1289
                if isinstance(value, (core.VarBase, core.eager.Tensor)):
1290 1291 1292 1293
                    if _buffers is None:
                        raise ValueError(
                            "super(YourLayer, self).__init__() should be called first"
                        )
1294 1295 1296
                    _remove_if_exist(
                        self.__dict__, self._parameters, self._sub_layers
                    )
1297 1298 1299 1300
                    # Set persistable=False by default. Only `register_buffer` can
                    # add a persistable buffer.
                    if name not in self._buffers:
                        self._non_persistable_buffer_names_set.add(name)
1301 1302
                    if not value.name:
                        value.name = unique_name.generate('_buffers_' + name)
1303 1304
                    _buffers[name] = value
                elif _buffers is not None and name in _buffers:
1305
                    # Note(Aurelius84): In Dy2stat, the value of the Buffer may be modified in
1306 1307 1308 1309
                    # decorated function, such as `self.buffer = new_tensor`. So we update its
                    # value via `assign`.
                    if type(value) == framework.Variable:
                        from paddle import assign
1310

1311 1312 1313 1314
                        # Note(zhhsplendid): the condition below happens in PaddleGan model,
                        # but should all non-Variable _buffers[name] be re-assign? We
                        # should consider it in the future. I current wrote this as
                        # conservative code.
1315 1316 1317
                        if in_declarative_mode() and _buffers[name] is None:
                            raise RuntimeError(
                                'In Dy2stat, self.{0} is a buffer and self.{0} is '
1318 1319 1320 1321 1322 1323 1324 1325
                                'not allowed to be set to Variable when self.{0} is None.'.format(
                                    name
                                )
                            )
                        elif (
                            _buffers[name] is None
                            or type(getattr(self, name)) == core.VarBase
                        ):
1326 1327
                            _buffers[name] = assign(value)
                        else:
1328
                            assign(value, getattr(self, name))
1329
                    elif value is not None:
1330
                        raise TypeError(
1331 1332 1333 1334
                            "assignment to buffers '{}' should be of type core.VarBase or None, but got '{}'".format(
                                name, type(value).__name__
                            )
                        )
1335 1336 1337 1338
                    else:
                        # Assigning None will remove the buffer, but if re-assign a new varBase to it,
                        # it will be remarked as a buffer with same `persistable` attribute.
                        _buffers[name] = None
1339 1340
                else:
                    object.__setattr__(self, name, value)
X
Xin Pan 已提交
1341 1342 1343 1344 1345 1346

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
1347 1348 1349
        elif name in self._buffers:
            del self._buffers[name]
            self._non_persistable_buffer_names_set.discard(name)
X
Xin Pan 已提交
1350 1351 1352
        else:
            object.__delattr__(self, name)

1353 1354
    def __dir__(self):
        """
W
wanghuancoder 已提交
1355
        Return a list. Get all parameters, buffers(non-parameter tensors), sublayers, method and attr of Layer.
1356 1357

        Examples:
1358 1359 1360
            .. code-block:: python
                import paddle
                import numpy as np
1361

1362 1363 1364 1365 1366
                class Mylayer(paddle.nn.Layer):
                    def __init__(self):
                        super(Mylayer, self).__init__()
                        self.linear1 = paddle.nn.Linear(10, 10)
                        self.linear2 = paddle.nn.Linear(5, 5)
C
cnn 已提交
1367
                        self.conv2d = paddle.nn.Conv2D(3, 2, 3)
1368 1369
                        self.embedding = paddle.nn.Embedding(128, 16)
                        self.h_0 = paddle.to_tensor(np.zeros([10, 10]).astype('float32'))
1370

1371 1372 1373 1374
                mylayer = Mylayer()
                print(dir(mylayer))
                # only parts are shown, because of list have too much content
                # ['__call__', '__class__',  ... , 'conv2d', 'embedding', 'h_0', 'linear1', 'linear2', ... , 'sublayers', 'train']
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

        """
        method = dir(self.__class__)
        attrs = list(self.__dict__.keys())
        parameters = list(self._parameters.keys())
        sublayers = list(self._sub_layers.keys())
        buffers = list(self._buffers.keys())

        keys = method + attrs + parameters + sublayers + buffers

        return keys

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
    def extra_repr(self):
        """
        Extra representation of this layer, you can have custom implementation
        of your own layer.
        """
        return ''

    def __repr__(self):
        extra_lines = []
        extra_repr = self.extra_repr()
        extra_lines = extra_repr.split('\n')
        sublayer_lines = []
        for name, layer in self._sub_layers.items():
            sublayer_str = repr(layer)
            sublayer_str = _addindent(sublayer_str, 2)
            sublayer_lines.append('(' + name + '): ' + sublayer_str)

        final_str = self.__class__.__name__ + '('
        if extra_lines:
            if len(extra_lines) > 1:
                final_str += '\n  ' + '\n  '.join(extra_lines) + '\n'
            elif len(extra_lines) == 1:
                final_str += extra_lines[0]
        if sublayer_lines:
            final_str += '\n  ' + '\n  '.join(sublayer_lines) + '\n'

        final_str += ')'
        return final_str

1416 1417 1418 1419 1420
    def register_state_dict_hook(self, hook):
        hook_remove_helper = HookRemoveHelper(self._state_dict_hooks)
        self._state_dict_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

1421 1422 1423 1424 1425 1426
    def _obtain_parameters_buffers(
        self,
        destination=None,
        include_sublayers=True,
        structured_name_prefix="",
    ):
S
ShenLiang 已提交
1427
        """
1428
        The difference from state_dict() is that state_dict_hook will not be called,
S
ShenLiang 已提交
1429 1430 1431 1432 1433 1434 1435 1436
        but the original types of parameters and buffers will be maintained.
        """
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
                destination[structured_name_prefix + name] = data
        for name, buffer in self._buffers.items():
1437 1438 1439 1440
            if (
                buffer is not None
                and name not in self._non_persistable_buffer_names_set
            ):
S
ShenLiang 已提交
1441 1442 1443 1444 1445 1446 1447 1448
                destination[structured_name_prefix + name] = buffer

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
                        layer_item._obtain_parameters_buffers(
1449 1450 1451 1452 1453
                            destination_temp,
                            include_sublayers,
                            structured_name_prefix + layer_name + ".",
                        )
                    )
S
ShenLiang 已提交
1454 1455 1456
                    destination = destination_temp
        return destination

1457 1458 1459 1460 1461 1462 1463 1464
    def _state_dict_impl(
        self,
        destination=None,
        include_sublayers=True,
        structured_name_prefix="",
        include_non_persistable_buffer=False,
        use_hook=True,
    ):
1465 1466 1467 1468 1469 1470 1471
        """
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
            include_non_persistable_buffer(bool, optional): If true, include non persistable buffers of current layer and its sub-layers, it is used in pure fp16 and jit.save. Default: False
1472
            use_hook(bool, optional) : If true, the operations contained in _state_dict_hooks will be appended to the destination. Default: True
1473 1474 1475 1476 1477 1478 1479 1480 1481
        """

        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
                destination[structured_name_prefix + name] = data
        for name, buffer in self._buffers.items():
            if not include_non_persistable_buffer:
1482 1483 1484 1485
                if (
                    buffer is not None
                    and name not in self._non_persistable_buffer_names_set
                ):
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
                    destination[structured_name_prefix + name] = buffer
            else:
                if buffer is not None:
                    destination[structured_name_prefix + name] = buffer

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
                        layer_item._state_dict_impl(
1497 1498
                            destination_temp,
                            include_sublayers,
1499
                            structured_name_prefix + layer_name + ".",
1500 1501 1502 1503
                            include_non_persistable_buffer,
                            use_hook,
                        )
                    )
1504
                    destination = destination_temp
1505 1506 1507 1508 1509
        if use_hook:
            for state_dict_hook in self._state_dict_hooks.values():
                hook_result = state_dict_hook(destination)
                if hook_result is not None:
                    destination = hook_result
1510 1511 1512

        return destination

1513 1514 1515 1516 1517 1518 1519
    def to_static_state_dict(
        self,
        destination=None,
        include_sublayers=True,
        structured_name_prefix="",
        use_hook=True,
    ):
1520
        '''
1521

1522 1523 1524 1525 1526
        Get all parameters and buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
1527
            use_hook(bool, optional) : If true, the operations contained in _state_dict_hooks will be appended to the destination. Default: True
1528

1529
        Retruns:
1530
            dict, a dict contains all the parameters and persistable buffers.
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546

        Examples:
            .. code-block:: python

                import paddle

                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.to_static_state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")

        '''
        return self._state_dict_impl(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
1547
            include_non_persistable_buffer=True,
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
            use_hook=use_hook,
        )

    def state_dict(
        self,
        destination=None,
        include_sublayers=True,
        structured_name_prefix="",
        use_hook=True,
    ):
H
hong 已提交
1558
        '''
1559
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
H
hong 已提交
1560

1561
        Parameters:
1562 1563
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
1564
            use_hook(bool, optional) : If true, the operations contained in _state_dict_hooks will be appended to the destination. Default: True
1565

H
hong 已提交
1566
        Retruns:
1567
            dict: a dict contains all the parameters and persistable buffers.
H
hong 已提交
1568 1569

        Examples:
1570 1571
            .. code-block:: python

1572
                import paddle
H
hong 已提交
1573

1574 1575 1576 1577
                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")
H
hong 已提交
1578 1579

        '''
1580 1581 1582 1583
        return self._state_dict_impl(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
1584
            include_non_persistable_buffer=False,
1585 1586
            use_hook=use_hook,
        )
1587

1588
    @framework.deprecate_stat_dict
J
Jiabin Yang 已提交
1589
    def set_state_dict(self, state_dict, use_structured_name=True):
H
hong 已提交
1590
        '''
1591
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
H
hong 已提交
1592

1593
        Parameters:
1594
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
1595
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key.
H
hong 已提交
1596
                                                  Default: True
H
hong 已提交
1597 1598 1599 1600
        Returns:
            None

        Examples:
1601 1602
            .. code-block:: python

1603
                import paddle
1604

1605
                emb = paddle.nn.Embedding(10, 10)
H
hong 已提交
1606

1607
                state_dict = emb.state_dict()
1608 1609
                paddle.save(state_dict, "paddle_dy.pdparams")
                para_state_dict = paddle.load("paddle_dy.pdparams")
1610
                emb.set_state_dict(para_state_dict)
H
hong 已提交
1611

H
hong 已提交
1612 1613
        '''

1614 1615 1616
        def _check_match(key, param):
            state = state_dict.get(key, None)
            if state is None:
1617
                raise ValueError(
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
                    "{} is not found in the provided dict.".format(key)
                )
            if isinstance(state, dict) or isinstance(state, list):
                if len(state) != len(param):
                    raise ValueError(
                        "{} receieves the length of {}, "
                        "but the expected shape is {}".format(
                            key, len(state), len(param)
                        )
                    )
S
Steffy-zxf 已提交
1628 1629 1630
                else:
                    return param, state
            else:
1631 1632 1633 1634 1635
                state_shape = (
                    state.shape()
                    if inspect.ismethod(state.shape)
                    else state.shape
                )
S
Steffy-zxf 已提交
1636 1637 1638

                if list(state_shape) != list(param.shape):
                    raise ValueError(
1639 1640 1641 1642
                        "{} receives a shape {}, but the expected shape is {}.".format(
                            key, list(state_shape), list(param.shape)
                        )
                    )
S
Steffy-zxf 已提交
1643
                return param, state
1644 1645

        matched_param_state = []
1646
        for key, param in self.state_dict(use_hook=False).items():
1647 1648 1649 1650 1651 1652 1653
            key_name = key if use_structured_name else param.name
            try:
                match_res = _check_match(key_name, param)
                matched_param_state.append(match_res)
            except ValueError as err:
                warnings.warn(("Skip loading for {}. ".format(key) + str(err)))

J
Jiabin Yang 已提交
1654
        if _non_static_mode():
1655 1656 1657
            for param, state in matched_param_state:
                param.set_value(state)
        else:
H
hong 已提交
1658

1659 1660 1661 1662 1663 1664 1665
            def _set_var(var, ndarray):
                t = global_scope().find_var(var.name).get_tensor()
                p = t._place()
                if p.is_cpu_place():
                    place = core.CPUPlace()
                elif p.is_cuda_pinned_place():
                    place = core.CUDAPinnedPlace()
1666 1667 1668 1669
                elif p.is_xpu_place():
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.XPUPlace(p.xpu_device_id())
1670 1671 1672 1673 1674 1675 1676 1677 1678
                else:
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.CUDAPlace(p.gpu_device_id())
                t.set(ndarray, place)

            executor = Executor(_get_device())._default_executor
            # restore parameter states
            core._create_loaded_parameter(
1679 1680 1681 1682
                [param for param, state in matched_param_state],
                global_scope(),
                executor,
            )
1683 1684 1685
            for param, state in matched_param_state:
                _set_var(param, state)

C
chentianyu03 已提交
1686 1687 1688 1689 1690
    def to(self, device=None, dtype=None, blocking=None):
        '''
        Cast the parameters and buffers of Layer by the give device, dtype and blocking.

        Parameters:
1691 1692 1693 1694
            device(str|paddle.CPUPlace()|paddle.CUDAPlace()|paddle.CUDAPinnedPlace()|paddle.XPUPlace()|None, optional): The device of the Layer which want to be stored.
            If None, the device is the same with the original Tensor. If device is string, it can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None.

1695
            dtype(str|numpy.dtype|paddle.dtype|None, optional): The type of the data. If None, the dtype is the same with the original Tensor. Default: None.
C
chentianyu03 已提交
1696

1697
            blocking(bool|None, optional): If False and the source is in pinned memory, the copy will be
C
chentianyu03 已提交
1698
              asynchronous with respect to the host. Otherwise, the argument has no effect. If None, the blocking is set True. Default: None.
1699

C
chentianyu03 已提交
1700
        Returns:
1701
            self
C
chentianyu03 已提交
1702 1703 1704 1705

        Examples:
            .. code-block:: python

1706
                # required: skip
C
chentianyu03 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
                import paddle

                linear=paddle.nn.Linear(2, 2)
                linear.weight
                #Parameter containing:
                #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(dtype='float64')
                linear.weight
                #Tenor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(device='cpu')
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CPUPlace, stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])
                linear.to(device=paddle.CUDAPinnedPlace(), blocking=False)
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CUDAPinnedPlace, stop_gradient=False,
                #       [[-0.04989364, -0.56889004],
                #        [ 0.33960250,  0.96878713]])
1732

1733
        '''
1734 1735 1736 1737 1738 1739 1740
        return self._to_impl(
            device=device,
            dtype=dtype,
            blocking=blocking,
            include_sublayers=True,
            floating_only=False,
        )
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753

    def _apply(self, func, device, dtype, blocking, include_sublayers=True):
        if include_sublayers:
            for layer in self.children():
                layer._apply(func, device, dtype, blocking, include_sublayers)

        for key, param in self._parameters.items():
            if param is not None:
                with no_grad():
                    param_applied = func(param, device, dtype, blocking)

                if param.grad is not None:
                    with no_grad():
1754 1755 1756
                        grad_applied = func(
                            param._grad_ivar(), device, dtype, blocking
                        )
1757 1758

        for key, buf in self._buffers.items():
1759 1760
            if buf is not None:
                self._buffers[key] = func(buf, device, dtype, blocking)
1761

1762 1763
        self._dtype = dtype

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
    def _transform(self, t, device, dtype, blocking):
        if device is None:
            device = t.place
        if dtype is None:
            dtype = t.dtype

        if type(dtype) is not VarDesc.VarType:
            dtype = convert_np_dtype_to_dtype_(dtype)

        # 1. gpu place need to determine whether the memory is sufficient for allocation:
        if t.place.is_gpu_place():
            # for gpu, minimum memory allocation unit is 256 bytes.
            size_dtype = core.size_of_dtype(dtype)
            # Note(zhangbo): Paddle GPU minimum memory allocation unit is 256 bytes, waiting_alloc_memory will comput ‘t’ occupied memory space.
            # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
            waiting_alloc_memory = (
1780 1781
                ((np.prod(t.shape) * size_dtype) / 256 + 1) * 256 * 1.2
            )
1782 1783 1784
            gpu_memory_available = core.gpu_memory_available()
            if gpu_memory_available < waiting_alloc_memory:
                # Copy param / Tensor to cpu
1785 1786 1787
                t_used = t._copy_to(
                    paddle.CPUPlace(), blocking
                )  # k-v type will error
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
                # Release mem of t
                t.value().get_tensor()._clear()
            else:
                t_used = t
        else:
            t_used = t

        # 2. cast param / Tensor to dtype
        if dtype is not None and dtype != t_used.dtype:
            with paddle.fluid.framework._dygraph_place_guard(
1798 1799
                place=t_used.place
            ):
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
                t_casted = t_used.cast(dtype=dtype)
        else:
            t_casted = t_used

        # 3. Copy casted cpu param / Tensor to device
        if device is not None and not t_casted.place._equals(device):
            new_t = t_casted._copy_to(device, blocking)
        else:
            new_t = t_casted

        # 4. share Tensor to origin param / Tensor
        dst_tensor = t.value().get_tensor()
        src_tensor = new_t.value().get_tensor()
        dst_tensor._share_data_with(src_tensor)

        return t

1817 1818 1819 1820 1821 1822 1823 1824
    def _to_impl(
        self,
        device=None,
        dtype=None,
        blocking=None,
        include_sublayers=True,
        floating_only=False,
    ):
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
        '''
        Cast the parameters and buffers of Layer by the give device, dtype and blocking.

        Parameters:
            device(str|paddle.CPUPlace()|paddle.CUDAPlace()|paddle.CUDAPinnedPlace()|paddle.XPUPlace()|None, optional): The device of the Layer which want to be stored.
            If None, the device is the same with the original Tensor. If device is string, it can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None.

            dtype(str|numpy.dtype|paddle.dtype|None, optional): The type of the data. If None, the dtype is the same with the original Tensor. Default: None.

            blocking(bool|None, optional): If False and the source is in pinned memory, the copy will be
              asynchronous with respect to the host. Otherwise, the argument has no effect. If None, the blocking is set True. Default: None.
1837

1838 1839
            include_sublayers(bool|True, optional): If True, deal with self and all sublayers parameters and buffers, if not only deal with self parameters and buffers. Default: True.

1840 1841
            floating_only(bool|False, optional): If True, only cast all floating point parameters and buffers of Layer by the give device, dtype and blocking.

1842 1843
        Returns:
            self
C
chentianyu03 已提交
1844 1845 1846 1847

        '''

        if device is None and dtype is None and blocking is None:
1848
            return self
C
chentianyu03 已提交
1849 1850 1851 1852

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
1853 1854 1855 1856 1857 1858 1859 1860 1861
            elif isinstance(
                device,
                (
                    core.CPUPlace,
                    core.CUDAPlace,
                    core.CUDAPinnedPlace,
                    core.XPUPlace,
                ),
            ):
C
chentianyu03 已提交
1862 1863 1864 1865
                pass
            else:
                raise ValueError(
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace() or paddle.XPUPlace(), but the type of device is "
1866 1867
                    + type(device).__name__
                )
C
chentianyu03 已提交
1868 1869 1870 1871 1872

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
1873 1874
                blocking, bool
            ), "blocking value error, must be the True, False or None"
C
chentianyu03 已提交
1875 1876

        def transform(t, device, dtype, blocking):
1877 1878 1879
            if floating_only and (not paddle.is_floating_point(t)):
                return t
            return self._transform(t, device, dtype, blocking)
C
chentianyu03 已提交
1880

1881 1882
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
1883
            self._apply(transform, device, dtype, blocking, include_sublayers)
1884

1885
        self._dtype = dtype
1886
        return self
C
chentianyu03 已提交
1887

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
    def _startup_program(self):
        """
        Return starup program containing initialization operations of all parameters.

        NOTE(dev): This is a very low level API and only for inner developer.
        """
        startup_program = Program()
        for param in self.parameters():
            param._create_init_op(startup_program.global_block())

        return startup_program

1900 1901 1902
    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict