data_set_py.cc 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fcntl.h>
#ifdef _POSIX_C_SOURCE
#undef _POSIX_C_SOURCE
#endif

#ifdef _XOPEN_SOURCE
#undef _XOPEN_SOURCE
#endif
22
#include <memory>
23
#include <string>
Z
Zeng Jinle 已提交
24 25
#include <unordered_map>
#include <utility>
26 27 28 29 30 31
#include <vector>
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/text_format.h"
#include "paddle/fluid/framework/async_executor.h"
#include "paddle/fluid/framework/data_feed.h"
#include "paddle/fluid/framework/data_feed.pb.h"
D
dongdaxiang 已提交
32
#include "paddle/fluid/framework/data_set.h"
33
#include "paddle/fluid/framework/dataset_factory.h"
34 35 36 37
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/variant.h"
D
dongdaxiang 已提交
38
#include "paddle/fluid/pybind/data_set_py.h"
39 40 41 42 43 44 45

namespace py = pybind11;
namespace pd = paddle::framework;

namespace paddle {
namespace pybind {

Z
Zeng Jinle 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
class IterableDatasetWrapper {
 public:
  IterableDatasetWrapper(framework::Dataset *dataset,
                         const std::vector<std::string> &slots,
                         const std::vector<platform::Place> &places,
                         size_t batch_size, bool drop_last)
      : dataset_(dataset),
        slots_(slots),
        places_(places),
        batch_size_(batch_size),
        drop_last_(drop_last) {
#if defined _WIN32
    PADDLE_THROW("Dataset is not supported on Windows");
#elif defined __APPLE__
    PADDLE_THROW("Dataset is not supported on MAC");
#else
    size_t device_num = places_.size();
    PADDLE_ENFORCE_GT(device_num, 0, "thread_num must be larger than 0");
    PADDLE_ENFORCE_GT(slots_.size(), 0, "slot_num cannot be 0");
    scopes_.reserve(device_num);
    tensors_.reserve(device_num);
    for (size_t i = 0; i < device_num; ++i) {
      scopes_.emplace_back(new framework::Scope());
      tensors_.emplace_back();
      for (auto &var_name : slots_) {
        auto *var = scopes_.back()->Var(var_name);
        auto *t = var->GetMutable<framework::LoDTensor>();
        tensors_.back().emplace_back(t);
      }
    }

    is_exhaustive_.resize(device_num);
    exhaustive_num_ = 0;
#endif
  }

  void Start() {
    PADDLE_ENFORCE_EQ(is_started_, false, "Reader has been started");
    data_feeds_ = dataset_->GetReaders();
    PADDLE_ENFORCE_EQ(data_feeds_.size(), places_.size(),
                      "Device number does not match reader number");
    for (size_t i = 0; i < places_.size(); ++i) {
      data_feeds_[i]->AssignFeedVar(*scopes_[i]);
      data_feeds_[i]->SetPlace(platform::CPUPlace());
      PADDLE_ENFORCE_EQ(data_feeds_[i]->Start(), true, "Reader start failed");
    }
    is_started_ = true;

    is_exhaustive_.assign(places_.size(), false);
    exhaustive_num_ = 0;
  }

  std::vector<std::unordered_map<std::string, framework::LoDTensor>> Next() {
    PADDLE_ENFORCE_EQ(is_started_, true, "Reader must be started");
    size_t device_num = places_.size();

    std::vector<std::unordered_map<std::string, framework::LoDTensor>> result(
        device_num);

    size_t read_num = 0;
    while (read_num < device_num && exhaustive_num_ < device_num) {
      for (size_t i = 0; i < data_feeds_.size(); ++i) {
        if (is_exhaustive_[i]) {
          continue;
        }

        bool is_success = (data_feeds_[i]->Next() > 0);
        if (!is_success) {
          is_exhaustive_[i] = true;
          ++exhaustive_num_;
          continue;
        }

        for (size_t j = 0; j < slots_.size(); ++j) {
          if (!IsValidLoDTensor(*tensors_[i][j])) {
            is_success = false;
            break;
          }

          if (tensors_[i][j]->place() == places_[read_num]) {
            result[read_num].emplace(slots_[j], std::move(*tensors_[i][j]));
          } else {
            framework::TensorCopy(std::move(*tensors_[i][j]), places_[read_num],
                                  &result[read_num][slots_[j]]);
          }
        }

        if (!is_success) {
          is_exhaustive_[i] = true;
          ++exhaustive_num_;
          continue;
        }

        ++read_num;
        if (read_num == device_num) {
          break;
        }
      }
    }

    if (UNLIKELY(read_num != device_num)) {
      is_started_ = false;
      throw py::stop_iteration();
    }

    return result;
  }

 private:
  bool IsValidLoDTensor(const framework::LoDTensor &tensor) const {
    auto &lod = tensor.lod();
    PADDLE_ENFORCE_LE(lod.size(), 1, "lod level must be not larger than 1");
    if (!drop_last_) return true;

    if (lod.empty()) {
      return static_cast<size_t>(tensor.dims()[0]) == batch_size_;
    } else {
      return lod[0].size() == batch_size_ + 1;
    }
  }

 private:
  framework::Dataset *dataset_;
  std::vector<std::string> slots_;
  std::vector<platform::Place> places_;
  size_t batch_size_;
  bool drop_last_;

  std::vector<framework::DataFeed *> data_feeds_;
  std::vector<bool> is_exhaustive_;
  size_t exhaustive_num_;

  std::vector<std::unique_ptr<framework::Scope>> scopes_;
  std::vector<std::vector<framework::LoDTensor *>> tensors_;
  bool is_started_{false};
};

void BindDataset(py::module *m) {
J
jiaqi 已提交
184
  py::class_<framework::Dataset, std::unique_ptr<framework::Dataset>>(*m,
185
                                                                      "Dataset")
Z
Zeng Jinle 已提交
186
      .def(py::init([](const std::string &name = "MultiSlotDataset") {
X
xujiaqi01 已提交
187
        return framework::DatasetFactory::CreateDataset(name);
D
dongdaxiang 已提交
188
      }))
J
jiaqi 已提交
189 190 191 192 193 194
      .def("set_filelist", &framework::Dataset::SetFileList,
           py::call_guard<py::gil_scoped_release>())
      .def("set_thread_num", &framework::Dataset::SetThreadNum,
           py::call_guard<py::gil_scoped_release>())
      .def("set_trainer_num", &framework::Dataset::SetTrainerNum,
           py::call_guard<py::gil_scoped_release>())
X
xjqbest 已提交
195
      .def("set_fleet_send_batch_size",
J
jiaqi 已提交
196 197 198 199 200 201 202 203 204 205 206 207
           &framework::Dataset::SetFleetSendBatchSize,
           py::call_guard<py::gil_scoped_release>())
      .def("set_hdfs_config", &framework::Dataset::SetHdfsConfig,
           py::call_guard<py::gil_scoped_release>())
      .def("set_data_feed_desc", &framework::Dataset::SetDataFeedDesc,
           py::call_guard<py::gil_scoped_release>())
      .def("get_filelist", &framework::Dataset::GetFileList,
           py::call_guard<py::gil_scoped_release>())
      .def("get_thread_num", &framework::Dataset::GetThreadNum,
           py::call_guard<py::gil_scoped_release>())
      .def("get_trainer_num", &framework::Dataset::GetTrainerNum,
           py::call_guard<py::gil_scoped_release>())
X
xjqbest 已提交
208
      .def("get_fleet_send_batch_size",
J
jiaqi 已提交
209 210 211 212 213 214
           &framework::Dataset::GetFleetSendBatchSize,
           py::call_guard<py::gil_scoped_release>())
      .def("get_hdfs_config", &framework::Dataset::GetHdfsConfig,
           py::call_guard<py::gil_scoped_release>())
      .def("get_data_feed_desc", &framework::Dataset::GetDataFeedDesc,
           py::call_guard<py::gil_scoped_release>())
215
      .def("register_client2client_msg_handler",
J
jiaqi 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
           &framework::Dataset::RegisterClientToClientMsgHandler,
           py::call_guard<py::gil_scoped_release>())
      .def("create_channel", &framework::Dataset::CreateChannel,
           py::call_guard<py::gil_scoped_release>())
      .def("create_readers", &framework::Dataset::CreateReaders,
           py::call_guard<py::gil_scoped_release>())
      .def("destroy_readers", &framework::Dataset::DestroyReaders,
           py::call_guard<py::gil_scoped_release>())
      .def("load_into_memory", &framework::Dataset::LoadIntoMemory,
           py::call_guard<py::gil_scoped_release>())
      .def("preload_into_memory", &framework::Dataset::PreLoadIntoMemory,
           py::call_guard<py::gil_scoped_release>())
      .def("wait_preload_done", &framework::Dataset::WaitPreLoadDone,
           py::call_guard<py::gil_scoped_release>())
      .def("release_memory", &framework::Dataset::ReleaseMemory,
           py::call_guard<py::gil_scoped_release>())
      .def("local_shuffle", &framework::Dataset::LocalShuffle,
           py::call_guard<py::gil_scoped_release>())
      .def("global_shuffle", &framework::Dataset::GlobalShuffle,
           py::call_guard<py::gil_scoped_release>())
      .def("get_memory_data_size", &framework::Dataset::GetMemoryDataSize,
           py::call_guard<py::gil_scoped_release>())
      .def("get_shuffle_data_size", &framework::Dataset::GetShuffleDataSize,
           py::call_guard<py::gil_scoped_release>())
      .def("set_queue_num", &framework::Dataset::SetChannelNum,
241
           py::call_guard<py::gil_scoped_release>())
242 243 244 245
      .def("set_parse_ins_id", &framework::Dataset::SetParseInsId,
           py::call_guard<py::gil_scoped_release>())
      .def("set_parse_content", &framework::Dataset::SetParseContent,
           py::call_guard<py::gil_scoped_release>())
246 247 248
      .def("set_merge_by_lineid", &framework::Dataset::SetMergeByInsId,
           py::call_guard<py::gil_scoped_release>())
      .def("merge_by_lineid", &framework::Dataset::MergeByInsId,
249 250 251 252
           py::call_guard<py::gil_scoped_release>())
      .def("slots_shuffle", &framework::Dataset::SlotsShuffle,
           py::call_guard<py::gil_scoped_release>())
      .def("set_fea_eval", &framework::Dataset::SetFeaEval,
253 254 255 256 257 258 259
           py::call_guard<py::gil_scoped_release>())
      .def("set_preload_thread_num", &framework::Dataset::SetPreLoadThreadNum,
           py::call_guard<py::gil_scoped_release>())
      .def("create_preload_readers", &framework::Dataset::CreatePreLoadReaders,
           py::call_guard<py::gil_scoped_release>())
      .def("destroy_preload_readers",
           &framework::Dataset::DestroyPreLoadReaders,
J
jiaqi 已提交
260
           py::call_guard<py::gil_scoped_release>());
Z
Zeng Jinle 已提交
261 262 263 264 265 266

  py::class_<IterableDatasetWrapper>(*m, "IterableDatasetWrapper")
      .def(py::init<framework::Dataset *, const std::vector<std::string> &,
                    const std::vector<platform::Place> &, size_t, bool>())
      .def("_start", &IterableDatasetWrapper::Start)
      .def("_next", &IterableDatasetWrapper::Next);
267 268
}

Z
Zeng Jinle 已提交
269 270
}  // namespace pybind
}  // namespace paddle