sequence_rnn_matched_inputs.py 3.4 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
# edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer_config_helpers import *

######################## data source ################################
define_py_data_sources2(
    train_list='gserver/tests/Sequence/dummy.list',
    test_list=None,
    module='rnn_data_provider',
    obj='process_mixed')

settings(batch_size=2, learning_rate=0.01)
######################## network configure ################################
dict_dim = 10
word_dim = 2
hidden_dim = 2
label_dim = 2

data1 = data_layer(name="word1", size=dict_dim)
data2 = data_layer(name="word2", size=dict_dim)
label = data_layer(name="label", size=label_dim)

encoding = embedding_layer(input=data2, size=word_dim)

subseq = embedding_layer(input=data1, size=word_dim)
seq = embedding_layer(input=data2, size=word_dim)
nonseq = embedding_layer(input=label, size=word_dim)


# This hierarchical RNN is designed to be equivalent to the simple RNN in
57
# sequence_rnn_mixed_inputs.conf
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
def outer_step(subseq, seq, nonseq, encoding):
    outer_mem = memory(name="outer_rnn_state", size=hidden_dim)

    def inner_step(subseq, seq, nonseq):
        inner_mem = memory(
            name="inner_rnn_state", size=hidden_dim, boot_layer=outer_mem)

        out = fc_layer(
            input=[subseq, seq, nonseq, inner_mem],
            size=hidden_dim,
            act=TanhActivation(),
            bias_attr=True,
            name='inner_rnn_state')
        return out

    decoder = recurrent_group(
        step=inner_step, name='inner', input=[subseq, seq, nonseq])
    last = last_seq(name="outer_rnn_state", input=decoder)
    context = simple_attention(
        encoded_sequence=encoding, encoded_proj=encoding, decoder_state=last)
    return context


out = recurrent_group(
    name="outer",
    step=outer_step,
    input=[
        subseq, expand_layer(
            seq, expand_as=subseq,
            expand_level=ExpandLevel.FROM_SEQUENCE), expand_layer(
                nonseq,
                expand_as=subseq,
                expand_level=ExpandLevel.FROM_NO_SEQUENCE),
        StaticInput(encoding)
    ])

rep = last_seq(input=out)
prob = fc_layer(
    size=label_dim, input=rep, act=SoftmaxActivation(), bias_attr=True)

outputs(classification_cost(input=prob, label=label))