gather_op.cu 2.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Z
zchen0211 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Z
zchen0211 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/eigen.h"
16
#include "paddle/fluid/operators/gather.cu.h"
Y
Yi Wang 已提交
17
#include "paddle/fluid/operators/gather_op.h"
18
#include "paddle/fluid/operators/scatter.cu.h"
Z
zchen0211 已提交
19 20 21 22 23

namespace paddle {
namespace operators {

template <typename T>
Z
zchen0211 已提交
24
class GatherOpCUDAKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
25 26 27 28 29 30 31 32 33
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");
    auto *x = ctx.Input<Tensor>("X");
    auto *index = ctx.Input<Tensor>("Index");
    auto *output = ctx.Output<Tensor>("Out");

    output->mutable_data<T>(ctx.GetPlace());
34
    if (x->numel() == 0) return;
35
    GPUGather<T>(ctx.device_context(), *x, *index, output);
Z
zchen0211 已提交
36 37 38 39
  }
};

template <typename T>
Z
zchen0211 已提交
40
class GatherGradOpCUDAKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
41 42 43 44 45 46 47 48 49 50
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");
    auto *Index = ctx.Input<Tensor>("Index");
    auto *dX = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dO = ctx.Input<Tensor>(framework::GradVarName("Out"));

    dX->mutable_data<T>(ctx.GetPlace());
    auto dxt = framework::EigenVector<T>::Flatten(*dX);
Q
QI JUN 已提交
51 52
    auto &place = *ctx.template device_context<platform::CUDADeviceContext>()
                       .eigen_device();
Z
zchen0211 已提交
53
    dxt.device(place) = dxt.constant(static_cast<T>(0));
54
    if (dO->numel() == 0) return;
55
    GPUScatterAssign<T>(ctx.device_context(), *dO, *Index, dX);
Z
zchen0211 已提交
56 57 58 59 60 61 62
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
63
namespace plat = paddle::platform;
64 65 66
REGISTER_OP_CUDA_KERNEL(gather, ops::GatherOpCUDAKernel<float>,
                        ops::GatherOpCUDAKernel<double>,
                        ops::GatherOpCUDAKernel<int64_t>,
67 68
                        ops::GatherOpCUDAKernel<int>,
                        ops::GatherOpCUDAKernel<plat::float16>);
69 70 71
REGISTER_OP_CUDA_KERNEL(gather_grad, ops::GatherGradOpCUDAKernel<float>,
                        ops::GatherGradOpCUDAKernel<double>,
                        ops::GatherGradOpCUDAKernel<int64_t>,
72 73
                        ops::GatherGradOpCUDAKernel<int>,
                        ops::GatherGradOpCUDAKernel<plat::float16>);