model_summary.py 8.2 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

import paddle
import paddle.nn as nn
from paddle.static import InputSpec

from collections import OrderedDict

__all__ = ['summary']


def summary(net, input_size, batch_size=None, dtypes=None):
    """Prints a string summary of the network.

    Args:
        net (Layer): the network which must be a subinstance of Layer.
        input_size (tuple|InputSpec|list[tuple|InputSpec]): size of input tensor. if model only 
                    have one input, input_size can be tuple or InputSpec. if model
                    have multiple input, input_size must be a list which contain 
                    every input's shape.
        batch_size (int, optional): batch size of input tensor, Default: None.
        dtypes (str, optional): if dtypes is None, 'float32' will be used, Default: None.

    Returns:
        Dict: a summary of the network including total params and total trainable params.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

            class LeNet(nn.Layer):
                def __init__(self, num_classes=10):
                    super(LeNet, self).__init__()
                    self.num_classes = num_classes
                    self.features = nn.Sequential(
                        nn.Conv2d(
                            1, 6, 3, stride=1, padding=1),
                        nn.ReLU(),
                        nn.MaxPool2d(2, 2),
                        nn.Conv2d(
                            6, 16, 5, stride=1, padding=0),
                        nn.ReLU(),
                        nn.MaxPool2d(2, 2))

                    if num_classes > 0:
                        self.fc = nn.Sequential(
                            nn.Linear(400, 120),
                            nn.Linear(120, 84),
                            nn.Linear(
                                84, 10))

                def forward(self, inputs):
                    x = self.features(inputs)

                    if self.num_classes > 0:
                        x = paddle.flatten(x, 1)
                        x = self.fc(x)
                    return x

            lenet = LeNet()

            params_info = paddle.summary(lenet, (1, 28, 28))
            print(params_info)

    """
    if isinstance(input_size, InputSpec):
        _input_size = tuple(input_size.shape[1:])
        if batch_size is None:
            batch_size = input_size.shape[0]
    elif isinstance(input_size, list):
        _input_size = []
        for item in input_size:
89 90
            if isinstance(item, int):
                item = (item, )
L
LielinJiang 已提交
91
            assert isinstance(item,
92
                              (tuple, InputSpec)), 'When input_size is list, \
L
LielinJiang 已提交
93 94 95 96 97 98 99 100 101
            expect item in input_size is a tuple or InputSpec, but got {}'.format(
                                  type(item))

            if isinstance(item, InputSpec):
                _input_size.append(tuple(item.shape[1:]))
                if batch_size is None:
                    batch_size = item.shape[0]
            else:
                _input_size.append(item)
102 103
    elif isinstance(input_size, int):
        _input_size = (input_size, )
L
LielinJiang 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    else:
        _input_size = input_size

    if batch_size is None:
        batch_size = -1

    result, params_info = summary_string(net, _input_size, batch_size, dtypes)
    print(result)

    return params_info


def summary_string(model, input_size, batch_size=-1, dtypes=None):
    if dtypes == None:
        dtypes = ['float32'] * len(input_size)

    summary_str = ''

    depth = len(list(model.sublayers()))

    def register_hook(module):
        def hook(module, input, output):
            class_name = str(module.__class__).split(".")[-1].split("'")[0]

            try:
                module_idx = int(module._full_name.split('_')[-1])
            except:
                module_idx = len(summary)

            m_key = "%s-%i" % (class_name, module_idx + 1)
            summary[m_key] = OrderedDict()
            summary[m_key]["input_shape"] = list(input[0].shape)
            summary[m_key]["input_shape"][0] = batch_size
            if isinstance(output, (list, tuple)):
                summary[m_key]["output_shape"] = [[-1] + list(o.shape)[1:]
                                                  for o in output]
            else:
                summary[m_key]["output_shape"] = list(output.shape)
                summary[m_key]["output_shape"][0] = batch_size

            params = 0
145
            if hasattr(module, "weight") and hasattr(module.weight, "shape"):
L
LielinJiang 已提交
146 147 148
                params += np.prod(module.weight.shape)
                summary[m_key]["trainable"] = module.weight.trainable or (
                    not module.weight.stop_gradient)
149
            if hasattr(module, "bias") and hasattr(module.bias, "shape"):
L
LielinJiang 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
                params += np.prod(module.bias.shape)
            summary[m_key]["nb_params"] = params

        if (not isinstance(module, nn.Sequential) and
                not isinstance(module, nn.LayerList) and
            (not (module == model) or depth < 1)):

            hooks.append(module.register_forward_post_hook(hook))

    if isinstance(input_size, tuple):
        input_size = [input_size]

    x = [
        paddle.rand(
            [2] + list(in_size), dtype=dtype)
        for in_size, dtype in zip(input_size, dtypes)
    ]

    # create properties
    summary = OrderedDict()
    hooks = []

    # register hook
    model.apply(register_hook)

    # make a forward pass
    model(*x)

    # remove these hooks
    for h in hooks:
        h.remove()

    table_width = 80
    summary_str += "-" * table_width + "\n"
    line_new = "{:>15} {:>20} {:>20} {:>15}".format(
        "Layer (type)", "Input Shape", "Output Shape", "Param #")
    summary_str += line_new + "\n"
    summary_str += "=" * table_width + "\n"
    total_params = 0
    total_output = 0
    trainable_params = 0
    for layer in summary:
        # input_shape, output_shape, trainable, nb_params
        line_new = "{:>15} {:>20} {:>20} {:>15}".format(
            layer,
            str(summary[layer]["input_shape"]),
            str(summary[layer]["output_shape"]),
            "{0:,}".format(summary[layer]["nb_params"]), )
        total_params += summary[layer]["nb_params"]

        total_output += np.prod(summary[layer]["output_shape"])
        if "trainable" in summary[layer]:
            if summary[layer]["trainable"] == True:
                trainable_params += summary[layer]["nb_params"]
        summary_str += line_new + "\n"

    # assume 4 bytes/number (float on cuda).
    total_input_size = abs(
        np.prod(sum(input_size, ())) * batch_size * 4. / (1024**2.))
    total_output_size = abs(2. * total_output * 4. /
                            (1024**2.))  # x2 for gradients
    total_params_size = abs(total_params * 4. / (1024**2.))
    total_size = total_params_size + total_output_size + total_input_size

    summary_str += "=" * table_width + "\n"
    summary_str += "Total params: {0:,}".format(total_params) + "\n"
    summary_str += "Trainable params: {0:,}".format(trainable_params) + "\n"
    summary_str += "Non-trainable params: {0:,}".format(total_params -
                                                        trainable_params) + "\n"
    summary_str += "-" * table_width + "\n"
    summary_str += "Input size (MB): %0.2f" % total_input_size + "\n"
    summary_str += "Forward/backward pass size (MB): %0.2f" % total_output_size + "\n"
    summary_str += "Params size (MB): %0.2f" % total_params_size + "\n"
    summary_str += "Estimated Total Size (MB): %0.2f" % total_size + "\n"
    summary_str += "-" * table_width + "\n"
    # return summary
    return summary_str, {
        'total_params': total_params,
        'trainable_params': trainable_params
    }